Suppr超能文献

提升物联网边缘设备上RDF引擎的可扩展性。

Pushing the Scalability of RDF Engines on IoT Edge Devices.

作者信息

Le-Tuan Anh, Hayes Conor, Hauswirth Manfred, Le-Phuoc Danh

机构信息

Open Distributed Systems, Technical University of Berlin, 10587 Berlin, Germany.

Insight Centre for Data Analytics, National University of Ireland Galway, Galway H91 TK33, Ireland.

出版信息

Sensors (Basel). 2020 May 14;20(10):2788. doi: 10.3390/s20102788.

Abstract

Semantic interoperability for the Internet of Things (IoT) is enabled by standards and technologies from the Semantic Web. As recent research suggests a move towards decentralised IoT architectures, we have investigated the scalability and robustness of RDF (Resource Description Framework)engines that can be embedded throughout the architecture, in particular at edge nodes. RDF processing at the edge facilitates the deployment of semantic integration gateways closer to low-level devices. Our focus is on how to enable scalable and robust RDF engines that can operate on lightweight devices. In this paper, we have first carried out an empirical study of the scalability and behaviour of solutions for RDF data management on standard computing hardware that have been ported to run on lightweight devices at the network edge. The findings of our study shows that these RDF store solutions have several shortcomings on commodity ARM (Advanced RISC Machine) boards that are representative of IoT edge node hardware. Consequently, this has inspired us to introduce a lightweight RDF engine, which comprises an RDF storage and a SPARQL processor for lightweight edge devices, called RDF4Led. RDF4Led follows the RISC-style (Reduce Instruction Set Computer) design philosophy. The design constitutes a flash-aware storage structure, an indexing scheme, an alternative buffer management technique and a low-memory-footprint join algorithm that demonstrates improved scalability and robustness over competing solutions. With a significantly smaller memory footprint, we show that RDF4Led can handle 2 to 5 times more data than popular RDF engines such as Jena TDB (Tuple Database) and RDF4J, while consuming the same amount of memory. In particular, RDF4Led requires 10%-30% memory of its competitors to operate on datasets of up to 50 million triples. On memory-constrained ARM boards, it can perform faster updates and can scale better than Jena TDB and Virtuoso. Furthermore, we demonstrate considerably faster query operations than Jena TDB and RDF4J.

摘要

物联网(IoT)的语义互操作性由语义网的标准和技术实现。由于最近的研究表明物联网架构正朝着去中心化方向发展,我们研究了可嵌入整个架构(特别是边缘节点)的RDF(资源描述框架)引擎的可扩展性和鲁棒性。边缘节点的RDF处理有助于将语义集成网关部署得更靠近底层设备。我们关注的是如何使可在轻量级设备上运行的RDF引擎具备可扩展性和鲁棒性。在本文中,我们首先对已移植到网络边缘轻量级设备上运行的标准计算硬件上的RDF数据管理解决方案的可扩展性和行为进行了实证研究。我们的研究结果表明,这些RDF存储解决方案在代表物联网边缘节点硬件的商用ARM(高级精简指令集计算机)板上存在若干缺点。因此,这促使我们引入一种轻量级RDF引擎,它由用于轻量级边缘设备的RDF存储和SPARQL处理器组成,称为RDF4Led。RDF4Led遵循RISC风格(精简指令集计算机)的设计理念。该设计构成了一种闪存感知存储结构、一种索引方案、一种替代缓冲区管理技术以及一种低内存占用的连接算法,与竞争解决方案相比,展示出了更高的可扩展性和鲁棒性。在内存占用显著更小的情况下,我们表明RDF4Led能够处理比诸如Jena TDB(元组数据库)和RDF4J等流行RDF引擎多2至5倍的数据,同时消耗相同数量的内存。特别是,RDF4Led在处理多达5000万个三元组的数据集时,所需内存仅为其竞争对手的10% - 30%。在内存受限的ARM板上,它能够执行更快的更新,并且比Jena TDB和Virtuoso具有更好的扩展性。此外,我们展示了比Jena TDB和RDF4J快得多的查询操作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c696/7284853/397272f6dcba/sensors-20-02788-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验