Suppr超能文献

基于物联网和边缘计算的智慧城市目标跟踪

Object Tracking for a Smart City Using IoT and Edge Computing.

作者信息

Zhang Hong, Zhang Zeyu, Zhang Lei, Yang Yifan, Kang Qiaochu, Sun Daniel

机构信息

Image Processing Center, BeiHang University, XueYuan Road No. 37, HaiDian District, Beijing 100083, China.

College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.

出版信息

Sensors (Basel). 2019 Apr 28;19(9):1987. doi: 10.3390/s19091987.

Abstract

As the Internet-of-Things (IoT) and edge computing have been major paradigms for distributed data collection, communication, and processing, smart city applications in the real world tend to adopt IoT and edge computing broadly. Today, more and more machine learning algorithms would be deployed into front-end sensors, devices, and edge data centres rather than centralised cloud data centres. However, front-end sensors and devices are usually not so capable as those computing units in huge data centres, and for this sake, in practice, engineers choose to compromise for limited capacity of embedded computing and limited memory, e.g., neural network models being pruned to fit embedded devices. Visual object tracking is one of many important elements of a smart city, and in the IoT and edge computing context, high requirements to computing power and memory space severely prevent massive and accurate tracking. In this paper, we report on our contribution to object tracking on lightweight computing including (1) using limited computing capacity and memory space to realise tracking; (2) proposing a new algorithm region proposal correlation filter fitting for most edge devices. Systematic evaluations show that (1) our techniques can fit most IoT devices; (2) our techniques can keep relatively high accuracy; and (3) the generated model size is much less than others.

摘要

由于物联网(IoT)和边缘计算已成为分布式数据收集、通信和处理的主要范式,现实世界中的智慧城市应用倾向于广泛采用物联网和边缘计算。如今,越来越多的机器学习算法将被部署到前端传感器、设备和边缘数据中心,而不是集中式云数据中心。然而,前端传感器和设备的能力通常不如大型数据中心中的计算单元,因此,在实践中,工程师们选择在嵌入式计算能力有限和内存有限的情况下做出妥协,例如,对神经网络模型进行剪枝以适应嵌入式设备。视觉目标跟踪是智慧城市的众多重要元素之一,在物联网和边缘计算环境中,对计算能力和内存空间的高要求严重阻碍了大规模且精确的跟踪。在本文中,我们报告了我们在轻量级计算上对目标跟踪的贡献,包括(1)利用有限的计算能力和内存空间实现跟踪;(2)提出一种适用于大多数边缘设备的新算法——区域提议相关滤波器。系统评估表明:(1)我们的技术可以适配大多数物联网设备;(2)我们的技术可以保持相对较高的精度;(3)生成的模型大小比其他模型小得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dba/6539964/c6d8e63e29f6/sensors-19-01987-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验