Mao Xinyu, Foucher Alexandre C, Montini Tiziano, Stach Eric A, Fornasiero Paolo, Gorte Raymond J
Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste 34127, Italy.
J Am Chem Soc. 2020 Jun 10;142(23):10373-10382. doi: 10.1021/jacs.0c00138. Epub 2020 Jun 1.
The ability to stabilize very small Pt crystallites in supported-metal catalysts following harsh treatments is an important industrial problem. Here, we demonstrate that Pt particles can be maintained in the 1- to 2-nm range following multiple oxidation and reduction cycles at 1073 K when the particles are supported on 0.5-nm LaFeO films that have been deposited onto MgAlO using atomic layer deposition. Characterization by scanning transmission electron microscopy suggests that when the catalyst is oxidized at 1073 K, the Pt crystallites are oriented with respect to the underlying LaFeO. X-ray absorption spectroscopy also shows evidence of changes in the Pt environment. CO-oxidation rates for the reduced catalyst remain unchanged after five redox cycles at 1073 K. Epitaxial growth of Pt clusters and the consequent strong metal-support interaction between Pt and LaFeO are suggested to be the main reasons for the enhanced catalytic performances.
在经过苛刻处理后,使负载型金属催化剂中的非常小的铂微晶保持稳定的能力是一个重要的工业问题。在此,我们证明,当颗粒负载在通过原子层沉积法沉积在MgAlO上的0.5纳米LaFeO薄膜上时,在1073 K下经过多次氧化和还原循环后,铂颗粒可以保持在1至2纳米的范围内。扫描透射电子显微镜表征表明,当催化剂在1073 K下氧化时,铂微晶相对于下面的LaFeO取向。X射线吸收光谱也显示了铂环境变化的证据。在1073 K下经过五个氧化还原循环后,还原催化剂的CO氧化速率保持不变。铂簇的外延生长以及随之而来的铂与LaFeO之间强烈的金属-载体相互作用被认为是催化性能增强的主要原因。