Suppr超能文献

利用机器学习预测就诊于急诊科的发热儿童的菌血症

Using Machine Learning to Predict Bacteremia in Febrile Children Presented to the Emergency Department.

作者信息

Tsai Chih-Min, Lin Chun-Hung Richard, Zhang Huan, Chiu I-Min, Cheng Chi-Yung, Yu Hong-Ren, Huang Ying-Hsien

机构信息

Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan.

Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 804201, Taiwan.

出版信息

Diagnostics (Basel). 2020 May 15;10(5):307. doi: 10.3390/diagnostics10050307.

Abstract

Blood culture is frequently used to detect bacteremia in febrile children. However, a high rate of negative or false-positive blood culture results is common at the pediatric emergency department (PED). The aim of this study was to use machine learning to build a model that could predict bacteremia in febrile children. We conducted a retrospective case-control study of febrile children who presented to the PED from 2008 to 2015. We adopted machine learning methods and cost-sensitive learning to establish a predictive model of bacteremia. We enrolled 16,967 febrile children with blood culture tests during the eight-year study period. Only 146 febrile children had true bacteremia, and more than 99% of febrile children had a contaminant or negative blood culture result. The maximum area under the curve of logistic regression and support vector machines to predict bacteremia were 0.768 and 0.832, respectively. Using the predictive model, we can categorize febrile children by risk value into five classes. Class 5 had the highest probability of having bacteremia, while class 1 had no risk. Obtaining blood cultures in febrile children at the PED rarely identifies a causative pathogen. Prediction models can help physicians determine whether patients have bacteremia and may reduce unnecessary expenses.

摘要

血培养常用于检测发热儿童的菌血症。然而,在儿科急诊科(PED),血培养结果出现高比例的阴性或假阳性情况很常见。本研究的目的是利用机器学习建立一个能够预测发热儿童菌血症的模型。我们对2008年至2015年到PED就诊的发热儿童进行了一项回顾性病例对照研究。我们采用机器学习方法和成本敏感学习来建立菌血症预测模型。在为期八年的研究期间,我们纳入了16967名进行血培养检测的发热儿童。只有146名发热儿童患有真正的菌血症,超过99%的发热儿童血培养结果为污染菌或阴性。逻辑回归和支持向量机预测菌血症的曲线下最大面积分别为0.768和0.832。使用该预测模型,我们可以根据风险值将发热儿童分为五类。第5类患菌血症的概率最高,而第1类没有风险。在PED对发热儿童进行血培养很少能确定致病病原体。预测模型可以帮助医生确定患者是否患有菌血症,并可能减少不必要的费用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f0/7277905/f9c3b7ae708f/diagnostics-10-00307-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验