Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France.
Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch Cedex, France.
RNA. 2020 Sep;26(9):1184-1197. doi: 10.1261/rna.074955.120. Epub 2020 May 19.
The 7SK small nuclear RNA (7SKsnRNA) plays a key role in the regulation of RNA polymerase II by sequestrating and inhibiting the positive transcription elongation factor b (P-TEFb) in the 7SK ribonucleoprotein complex (7SKsnRNP), a process mediated by interaction with the protein HEXIM. P-TEFb is also an essential cellular factor recruited by the viral protein Tat to ensure the replication of the viral RNA in the infection cycle of the human immunodeficiency virus (HIV-1). Tat promotes the release of P-TEFb from the 7SKsnRNP and subsequent activation of transcription, by displacing HEXIM from the 5'-hairpin of the 7SKsnRNA. This hairpin (HP1), comprising the signature sequence of the 7SKsnRNA, has been the subject of three independent structural studies aimed at identifying the structural features that could drive the recognition by the two proteins, both depending on arginine-rich motifs (ARM). Interestingly, four distinct structures were determined. In an attempt to provide a comprehensive view of the structure-function relationship of this versatile RNA, we present here a structural analysis of the models, highlighting how HP1 is able to adopt distinct conformations with significant impact on the compactness of the molecule. Since these models are solved under different conditions by nuclear magnetic resonance (NMR) and crystallography, the impact of the buffer composition on the conformational variation was investigated by complementary biophysical approaches. Finally, using isothermal titration calorimetry, we determined the thermodynamic signatures of the Tat-ARM and HEXIM-ARM peptide interactions with the RNA, showing that they are associated with distinct binding mechanisms.
7SK 小核 RNA(7SKsnRNA)在 RNA 聚合酶 II 的调控中起着关键作用,通过与蛋白 HEXIM 相互作用,将正转录延伸因子 b(P-TEFb)隔离并抑制在 7SK 核糖核蛋白复合物(7SKsnRNP)中,这一过程介导。P-TEFb 也是病毒蛋白 Tat 招募的一种重要细胞因子,以确保人类免疫缺陷病毒(HIV-1)感染周期中病毒 RNA 的复制。Tat 通过将 HEXIM 从 7SKsnRNA 的 5'发夹中置换出来,促进 P-TEFb 从 7SKsnRNP 中释放出来,并随后激活转录。该发夹(HP1)包含 7SKsnRNA 的特征序列,已经成为三个独立结构研究的主题,旨在确定可以驱动这两种蛋白质识别的结构特征,这两种蛋白质都依赖于富含精氨酸的模体(ARM)。有趣的是,确定了四个不同的结构。为了提供这种多功能 RNA 的结构-功能关系的全面视图,我们在这里对模型进行了结构分析,重点介绍了 HP1 如何能够采用不同的构象,对分子的紧凑性产生重大影响。由于这些模型是通过核磁共振(NMR)和晶体学在不同条件下解决的,因此通过互补的生物物理方法研究了缓冲组成对构象变化的影响。最后,使用等温滴定量热法,我们确定了 Tat-ARM 和 HEXIM-ARM 肽与 RNA 的相互作用的热力学特征,表明它们与不同的结合机制相关。