Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
J Biol Chem. 2020 Jul 10;295(28):9542-9550. doi: 10.1074/jbc.RA120.013738. Epub 2020 May 19.
Bacteriophage T7 encodes its own DNA polymerase, the product of gene 5 (gp5). In isolation, gp5 is a DNA polymerase of low processivity. However, gp5 becomes highly processive upon formation of a complex with thioredoxin, the product of the gene. Expression of a gp5 variant in which aspartate residues in the metal-binding site of the polymerase domain were replaced by alanine is highly toxic to cells. This toxicity depends on the presence of a functional allele and T7 RNA polymerase-driven expression but is independent of the exonuclease activity of gp5. , the purified gp5 variant is devoid of any detectable polymerase activity and inhibited DNA synthesis by the replisomes of and T7 in the presence of thioredoxin by forming a stable complex with DNA that prevents replication. On the other hand, the highly homologous Klenow fragment of DNA polymerase I containing an engineered gp5 thioredoxin-binding domain did not exhibit toxicity. We conclude that gp5 alleles encoding inactive polymerases, in combination with thioredoxin, could be useful as a shutoff mechanism in the design of a bacterial cell-growth system.
噬菌体 T7 编码其自身的 DNA 聚合酶,该酶的产物是基因 5(gp5)。gp5 本身是一种具有低延伸性的 DNA 聚合酶。然而,gp5 与硫氧还蛋白(基因产物)形成复合物后,延伸性会大大提高。在聚合酶结构域的金属结合位点中,用丙氨酸取代天冬氨酸残基的 gp5 变体的表达对细胞具有高度毒性。这种毒性依赖于有功能的等位基因和 T7 RNA 聚合酶驱动的表达,但不依赖于 gp5 的外切核酸酶活性。纯化的 gp5 变体几乎没有任何可检测到的聚合酶活性,并且在硫氧还蛋白存在的情况下,通过与 DNA 形成稳定的复合物来抑制噬菌体和 T7 的复制体的 DNA 合成,从而阻止复制。另一方面,含有工程化的 gp5 硫氧还蛋白结合结构域的高度同源的 DNA 聚合酶 I 的 Klenow 片段没有表现出毒性。我们得出结论,编码无活性聚合酶的 gp5 等位基因与硫氧还蛋白结合,可能成为设计细菌细胞生长系统的一种有效的关闭机制。