Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
Transl Stroke Res. 2021 Feb;12(1):164-184. doi: 10.1007/s12975-020-00810-3. Epub 2020 May 19.
Transient receptor potential melastatin 7 (TRPM7), a calcium-permeable, ubiquitously expressed ion channel, is critical for axonal development, and mediates hypoxic and ischemic neuronal cell death in vitro and in vivo. However, the downstream mechanisms underlying the TRPM7-mediated processes in physiology and pathophysiology remain unclear. In this study, we employed a mouse model of hypoxic-ischemic brain cell death which mimics the pathophysiology of hypoxic-ischemic encephalopathy (HIE). HIE is a major public health issue and an important cause of neonatal deaths worldwide; however, the available treatments for HIE remain limited. Its survivors face life-long neurological challenges including mental retardation, cerebral palsy, epilepsy and seizure disorders, motor impairments, and visual and auditory impairments. Through a proteomic analysis, we identified calcium/calmodulin-dependent protein kinase II (CaMKII) and phosphatase calcineurin as potential mediators of cell death downstream from TRPM7 activation. Further analysis revealed that TRPM7 mediates cell death through CaMKII, calmodulin, calcineurin, p38, and cofilin cascade. In vivo, we found a significant reduction of brain injury and improvement of short- and long-term functional outcomes after HI after administration of specific TRPM7 blocker waixenicin A. Our data demonstrate a molecular mechanism of TRPM7-mediated cell death and identifies TRPM7 as a promising therapeutic and drug development target for HIE.
瞬时受体电位 melastatin 7(TRPM7)是一种钙通透性的、广泛表达的离子通道,对轴突发育至关重要,并在体外和体内介导缺氧和缺血性神经元细胞死亡。然而,TRPM7 在生理和病理生理学过程中介导的下游机制仍不清楚。在这项研究中,我们使用了一种模拟缺氧缺血性脑病(HIE)病理生理学的缺氧缺血性脑细胞死亡的小鼠模型。HIE 是一个主要的公共卫生问题,也是全球新生儿死亡的重要原因;然而,现有的 HIE 治疗方法仍然有限。其幸存者面临终身神经挑战,包括智力迟钝、脑瘫、癫痫和癫痫发作障碍、运动障碍以及视觉和听觉障碍。通过蛋白质组学分析,我们确定钙/钙调蛋白依赖性蛋白激酶 II(CaMKII)和磷酸酶钙调神经磷酸酶作为 TRPM7 激活后细胞死亡的潜在下游介质。进一步的分析表明,TRPM7 通过 CaMKII、钙调蛋白、钙调神经磷酸酶、p38 和丝切蛋白级联介导细胞死亡。在体内,我们发现在用特异性 TRPM7 阻断剂 waixenicin A 处理后,HI 后的脑损伤显著减少,短期和长期功能结局得到改善。我们的数据表明了 TRPM7 介导的细胞死亡的分子机制,并确定 TRPM7 是 HIE 的有希望的治疗和药物开发靶点。