Raya Jésus, Bianco Alberto, Hirschinger Jérôme
Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, Strasbourg, France.
Phys Chem Chem Phys. 2020 Jun 7;22(21):12209-12227. doi: 10.1039/d0cp00454e. Epub 2020 May 20.
Hartmann-Hahn cross-polarization (HHCP) is the most widely used solid-state NMR technique to enhance the magnetization of dilute spins from abundant spins. Furthermore, as the kinetics of CP depends on dipolar interactions, it contains valuable information on molecular structure and dynamics. In this work, analytical solutions are derived for the kinetics of HHCP and multiple-contact CP (MC-CP) using both classical and non-classical spin-coupling models including the effects of molecular dynamics and several H, C relaxation and H-C CP experiments are performed in graphene oxide (GO). HHCP is found to be inefficient in our GO sample due to very fast H T relaxation. By contrast, the MC-CP technique which alleviates most of the magnetization loss by H T relaxation leads to a much larger polarization transfer efficiency reducing the measuring time by an order of magnitude. A detailed analysis of the HHCP and MC-CP kinetics indicates the existence of at least two different kinds of hydroxyl (C-OH) functional groups in GO, the major fraction (∼90%) of these groups being in the unusual "slow CP regime" in which the rate of H T relaxation is fast compared to the rate of cross-polarization. This C signal component is attributed to mobile C-OH groups interacting preferentially with fast-relaxing water molecules while the remaining carbons (∼10%) in the usual "fast CP regime" are assigned to C-OH groups involved in hydrogen bonding with neighboring hydroxyl and/or epoxy groups.
哈特曼-哈恩交叉极化(HHCP)是最广泛使用的固态核磁共振技术,用于增强丰富自旋对稀自旋的磁化作用。此外,由于交叉极化的动力学取决于偶极相互作用,它包含了有关分子结构和动力学的有价值信息。在这项工作中,我们使用经典和非经典自旋耦合模型推导了HHCP和多接触交叉极化(MC-CP)动力学的解析解,其中包括分子动力学的影响,并在氧化石墨烯(GO)中进行了几次氢、碳弛豫和氢-碳交叉极化实验。由于氢横向弛豫非常快,我们发现HHCP在我们的GO样品中效率不高。相比之下,MC-CP技术通过氢横向弛豫减轻了大部分磁化损失,导致极化转移效率大大提高,测量时间减少了一个数量级。对HHCP和MC-CP动力学的详细分析表明,GO中至少存在两种不同类型的羟基(C-OH)官能团,这些基团的主要部分(约90%)处于不寻常的“慢交叉极化状态”,其中氢横向弛豫速率比交叉极化速率快。这种碳信号成分归因于与快速弛豫水分子优先相互作用的可移动C-OH基团,而处于通常“快交叉极化状态”的其余碳(约10%)则归属于与相邻羟基和/或环氧基团形成氢键的C-OH基团。