Jiang Yu, Gao Shanshan, Liu Jinling, Xu Gongchen, Jia Qiang, Chen Fushan, Song Xiaoming
Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China.
Nanoscale. 2020 Jun 4;12(21):11573-11581. doi: 10.1039/d0nr02058c.
The urea oxidation reaction (UOR) is an ideal alternative to the oxygen evolution reaction (OER) towards energy efficient hydrogen production. However developing Earth-abundant electrocatalysts for urea oxidation and hydrogen generation still remains a big challenge. Herein, porous CoS2 nanosheet self-interconnected networks with high oxidation states located on a Ti-mesh (P-CoS2/Ti) are synthesized and can act as a high activity catalyst for both the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). In this literature, we report a very interesting phenomenon that cobalt hydroxide with different chemical compositions and crystal structures can be synthesized by adjusting the concentration of NaOH during the etching process. Moreover, porous CoS2 nanosheets with different crystallite sizes can be synthesized by adjusting the sulfuration temperature. P-CoS2/Ti presents outstanding catalytic performance with an overpotential of 91 mV to deliver a current density of 10 mA cm-2 for the HER, and it gives an anode potential of 1.243 V vs. RHE at 10 mA cm-2 for the UOR. A two-electrode electrolyser is used to validate the catalyst performance, and the P-CoS2/Ti||P-CoS2/Ti electrode is capable of producing a current density of 10 mA cm-2 at a cell potential of only 1.375 V, demonstrating its potential feasibility in the practical application of efficient hydrogen production.
尿素氧化反应(UOR)是一种理想的析氧反应(OER)替代反应,有助于实现高效制氢。然而,开发用于尿素氧化和制氢的地球丰富型电催化剂仍然是一个巨大的挑战。在此,合成了位于钛网上的具有高氧化态的多孔CoS₂纳米片自互连网络(P-CoS₂/Ti),其可作为析氢反应(HER)和尿素氧化反应(UOR)的高活性催化剂。在本文中,我们报道了一个非常有趣的现象,即在蚀刻过程中通过调节NaOH的浓度可以合成具有不同化学成分和晶体结构的氢氧化钴。此外,通过调节硫化温度可以合成具有不同微晶尺寸的多孔CoS₂纳米片。P-CoS₂/Ti表现出优异的催化性能,对于HER,在过电位为91 mV时可实现10 mA cm⁻²的电流密度;对于UOR,在10 mA cm⁻²时相对于可逆氢电极(RHE)的阳极电位为1.243 V。使用两电极电解槽验证催化剂性能,P-CoS₂/Ti||P-CoS₂/Ti电极在仅1.375 V的电池电位下能够产生10 mA cm⁻²的电流密度,证明了其在高效制氢实际应用中的潜在可行性。