Zhao Peng, Liu Qiancheng, Yang Xulin, Yang Sudong, Chen Lin, Zhu Jie, Zhang Qian
Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
J Colloid Interface Sci. 2024 Nov;673:49-59. doi: 10.1016/j.jcis.2024.06.056. Epub 2024 Jun 9.
The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm with a small Tafel slope (58 mV dec). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm and a prominent durability (120 h at 50 mA cm). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.
构建具有明确三维(3D)形态和优化电子结构的无粘结剂电极,是设计用于高效绿色氢能技术的高性能电催化剂的有效策略。在此,钌纳米晶体修饰在泡沫镍铁上具有开放网络状框架的三维互连多孔氢氧化铁纳米结构上(Ru/FeOOH@NFF),用作高效电催化剂。在本研究中,首先在泡沫镍铁上电沉积具有开放网络结构的三维互连多孔氢氧化铁,并用作原位修饰钌纳米晶体的载体。随后,通过涉及硼氢化钠还原的吸附-还原方法,将钌纳米晶体和大量氧空位同时引入氢氧化铁基质中。Ru/FeOOH@NFF电催化剂具有大比表面积、丰富的氧空位和调制的电子结构,这些共同导致其在析氧反应(OER)和尿素氧化反应(UOR)方面的催化性能显著增强。Ru/FeOOH@NFF催化剂表现出出色的OER性能,在200 mA cm²时所需过电位低(360 mV),塔菲尔斜率小(58 mV dec⁻¹)。同时,Ru/FeOOH@NFF催化剂在272 mV的较低过电位下实现200 mA cm²时表现出更高效的UOR活性。此外,使用Ru/FeOOH@NFF作为阳极和铂作为阴极的整体尿素电解槽(Ru/FeOOH@NFF||Pt)在10 mA cm²时的电池电压为1.478 V,并且具有出色的耐久性(在50 mA cm²下持续120小时)。这项工作将为构建具有三维微观结构的高性能电催化剂以促进尿素辅助水电解提供有价值的认识。