Swarts Pieter J, Conradie Jeanet
Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa.
Inorg Chem. 2020 Jun 1;59(11):7444-7452. doi: 10.1021/acs.inorgchem.0c00150. Epub 2020 May 20.
Four new ferrocenylsubphthalocyanines Y-BSubPc, with ferrocenylcarboxylic acid YH = Fc-CH-CH-COOH () or Fc-CH═CH-COOH () in the axial Y position, were synthesized with a 40% yield. The axial ferrocenylcarboxylic acid moiety did not have a significant influence on the position of the Q bands maxima of the UV/vis spectra of the ferrocenylsubphthalocyanines or on the H NMR position of the ring proton peaks of Y-BSubPc(H) or on the F NMR position of the ring F peaks of YSubPc(F), relative to their respective parent compounds Cl-BSubPc(H) and Cl-BSubPc(F) , containing axial chlorine. Very weak metal-to-ligand-charge-transfer bands (MLCT) in the near-IR region were observed. An electrochemical study utilizing cyclic voltammetry showed that electronic communication exists between ferrocene on the axial ferrocenylcarboxylic acid and the π-electrons of the macrocycle of the ferrocenylsubphthalocyanine (Fc(CH)COO)-BSubPc(H),, (Fc(CH)COO)-BSubPc(H), , (Fc(CH)COO)-BSubPc(F), , and (Fc(CH)COO)-BSubPc(F), . The Fe group of the ferrocenyl-containing axial ligand is involved in the first reversible oxidation process, followed by a second oxidation localized on the subphthalocyanine ligand. The fluorine ring substituents in SubPcs and caused the ferrocenyl oxidation to shift more positive by . 0.1 V, compared to SubPcs and without fluorine. Density functional theory (DFT) calculations provided further insight into the properties of these novel ferrocenylsubphthalocyanines. The neutral species of SubPcs - have LUMOs with mainly π-ring character and HOMOs with mainly iron-d character, confirming ring-based reduction, metal-based Fe(II) to Fe(III) oxidation, as well as weak MLCT in the near-IR region. Further DFT optimization of the cation (oxidized) species was essential to verify the second ring-based oxidation.
合成了四种新的二茂铁基取代酞菁Y-BSubPc,轴向Y位带有二茂铁基羧酸YH = Fc-CH-CH-COOH()或Fc-CH═CH-COOH(),产率为40%。相对于各自含轴向氯的母体化合物Cl-BSubPc(H) 和Cl-BSubPc(F) ,轴向二茂铁基羧酸部分对二茂铁基取代酞菁的紫外/可见光谱Q带最大值位置、Y-BSubPc(H) 环质子峰的1H NMR位置或YSubPc(F) 环氟峰的19F NMR位置没有显著影响。在近红外区域观察到非常弱的金属-配体电荷转移带(MLCT)。利用循环伏安法进行的电化学研究表明,轴向二茂铁基羧酸上的二茂铁与二茂铁基取代酞菁(Fc(CH)COO)-BSubPc(H)、(Fc(CH)COO)-BSubPc(H) 、(Fc(CH)COO)-BSubPc(F) 和(Fc(CH)COO)-BSubPc(F) 的大环π电子之间存在电子通信。含二茂铁的轴向配体的Fe基团参与第一个可逆氧化过程,随后是亚酞菁配体上的第二个氧化过程。与不含氟的SubPcs 和 相比,SubPcs 和 中的氟环取代基使二茂铁基氧化电位正移0.1 V。密度泛函理论(DFT)计算进一步深入了解了这些新型二茂铁基取代酞菁的性质。SubPcs -的中性物种具有主要为π环特征的最低未占分子轨道(LUMO)和主要为铁d特征的最高已占分子轨道(HOMO),证实了基于环的还原、基于金属的Fe(II)到Fe(III)氧化以及近红外区域的弱MLCT。对阳离子(氧化)物种进行进一步的DFT优化对于验证第二个基于环的氧化至关重要。