Suppr超能文献

金属性依赖的碳纳米管中超快水输运。

Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes.

机构信息

School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.

Institute of Nanotechnology, Gebze Technical University, Kocaeli, 41400, Turkey.

出版信息

Small. 2020 Jun;16(25):e1907575. doi: 10.1002/smll.201907575. Epub 2020 May 20.

Abstract

Carbon nanotubes (CNTs) with hydrophobic and atomically smooth inner channels are promising for building ultrahigh-flux nanofluidic platforms for energy harvesting, health monitoring, and water purification. Conventional wisdom is that nanoconfinement effects determine water transport in CNTs. Here, using full-atomistic molecular dynamics simulations, it is shown that water transport behavior in CNTs strongly correlates with the electronic properties of single-walled CNTs (metallic (met) vs semiconducting (s/c)), which is as dominant as the effect of nanoconfinement. Three pairs of CNTs (i.e., (8,8) , 10.85 Å vs (9,7) , 10.88 Å; (9,8) , 11.53 Å vs (10,7) , 11.59 Å; and (9,9) , 12.20 Å vs (10,8) , 12.23 Å) are used to investigate the roles of diameter and metallicity. Specifically, the (9,8) can restrict the hydrogen-bonding-mediated structuring of water and give the highest reduction in carbon-water interaction energy, providing an extraordinarily high water flux, around 250 times that of the commercial reverse osmosis membranes and approximately fourfold higher than the flux of the state-of-the-art boron nitrate nanotubes. Further, the high performance of (9,8) is also reproducible when embedded in lipid bilayers as synthetic high-water flux porins. Given the increasing availability of high-purity CNTs, these findings provide valuable guides for realizing novel CNT-enhanced nanofluidic systems.

摘要

碳纳米管(CNTs)具有疏水和亲水的原子平滑内通道,是构建用于能量收集、健康监测和水净化的超高通量纳米流控平台的有前途的材料。传统观点认为,纳米限域效应决定了 CNT 中的水输运。在这里,通过全原子分子动力学模拟,表明 CNT 中的水输运行为与单壁 CNT 的电子特性(金属(met)与半导体(s/c))密切相关,这与纳米限域效应一样重要。使用三对 CNT(即(8,8),10.85 Å 与(9,7),10.88 Å;(9,8),11.53 Å 与(10,7),11.59 Å;和(9,9),12.20 Å 与(10,8),12.23 Å)来研究直径和金属性的作用。具体来说,(9,8)可以限制氢键介导的水分子结构并降低碳-水相互作用能,从而提供极高的水通量,约为商业反渗透膜的 250 倍,大约是最先进的硝酸硼纳米管的四倍。此外,(9,8)的高性能在嵌入脂质双层作为合成高水通量 porin 时也是可重复的。鉴于高纯度 CNT 的可用性不断增加,这些发现为实现新型 CNT 增强纳米流控系统提供了有价值的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验