Ma Teng, Kimura Yasuo, Yamamoto Hideaki, Feng Xingyao, Hirano-Iwata Ayumi, Niwano Michio
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
Faculty of Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0914, Japan.
J Phys Chem B. 2020 Jun 18;124(24):5067-5072. doi: 10.1021/acs.jpcb.0c02279. Epub 2020 Jun 4.
Nanobubbles (NBs), with their unique physicochemical properties and promising applications, have become an important research topic. Generation of monodispersed bulk NBs with specified gas content remains a challenge. We developed a simple method for generating bulk NBs, using porous alumina films with ordered straight nanoscaled holes. Different techniques, such as nanoparticle tracking analysis (NTA), atomic force microscopy (AFM), and infrared absorption spectroscopy (IRAS), are used to confirm NB formation. The NTA data demonstrate that the minimum size of the NBs formed is less than 100 nm, which is comparable to the diameter of nanoholes in the porous alumina film. By generating NBs with different gases, including CO, O, N, Ar, and He, we discovered that the minimum size of NBs negatively correlated with the solubility of encapsulated gases in water. Due to the monodispersed size of NBs generated from the highly ordered porous alumina, we determined that NB size is distributed discretely with a uniform increment factor of [Formula: see text]. To explain the observed characteristic size distribution of NBs, we propose a simple model in which two NBs of the same size are assumed to preferentially coalesce. This characteristic bubble size distribution is useful for elucidating the basic characteristics of nanobubbles, such as the long-term stability of NBs. This distribution can also be used to develop new applications of NBs, for example, nanoscaled reaction fields through bubble coalescence.
纳米气泡(NBs)凭借其独特的物理化学性质和广阔的应用前景,已成为一个重要的研究课题。生成具有特定气体含量的单分散大量纳米气泡仍然是一项挑战。我们开发了一种利用具有有序直纳米级孔洞的多孔氧化铝膜来生成大量纳米气泡的简单方法。采用了不同的技术,如纳米颗粒跟踪分析(NTA)、原子力显微镜(AFM)和红外吸收光谱(IRAS)来确认纳米气泡的形成。NTA数据表明所形成的纳米气泡的最小尺寸小于100nm,这与多孔氧化铝膜中纳米孔的直径相当。通过生成包含CO、O、N、Ar和He等不同气体的纳米气泡,我们发现纳米气泡的最小尺寸与封装气体在水中的溶解度呈负相关。由于从高度有序的多孔氧化铝生成的纳米气泡尺寸单分散,我们确定纳米气泡尺寸以[公式:见原文]的均匀增量因子离散分布。为了解释观察到的纳米气泡特征尺寸分布,我们提出了一个简单模型,其中假设两个相同尺寸的纳米气泡优先合并。这种特征气泡尺寸分布有助于阐明纳米气泡的基本特性,如纳米气泡的长期稳定性。这种分布还可用于开发纳米气泡的新应用,例如通过气泡合并形成纳米级反应场。