Liu Xuan, Samfaß Lisa, Kolpatzeck Kevin, Häring Lars, Balzer Jan C, Hoffmann Martin, Czylwik Andreas
Faculty of Engineering, University of Duisburg-Essen (UDE), 47057 Duisburg, Germany.
Faculty of Electrical Engineering and Information Technology, Ruhr University Bochum (RUB), 44801 Bochum, Germany.
Sensors (Basel). 2020 May 19;20(10):2874. doi: 10.3390/s20102874.
With an increasing number of applications of terahertz systems in industrial fields and communications, terahertz beamforming and beam steering techniques are required for high-speed, large-area scanning. As a promising means for beam steering, micro-electro-mechanical system (MEMS)-based reflection gratings have been successfully implemented for terahertz beam control. So far, the diffraction grating efficiency is relatively low due to the limited vertical displacement range of the reflectors. In this paper, we propose a design for a reconfigurable MEMS-based reflection grating consisting of multiple subwavelength reflectors which are driven by 5-bit, high-throw electrostatic actuators. We vary the number of the reflectors per grating period and configure the throw of individual reflectors so that the reflection grating is shaped as a blazed grating to steer the terahertz beam with maximum diffraction grating efficiency. Furthermore, we provide a mathematical model for calculating the radiation pattern of the terahertz wave reflected by general reflection gratings consisting of subwavelength reflectors. The calculated and simulated radiation patterns of the designed grating show that we can steer the angle of the terahertz waves in a range of up to ± 56.4 ∘ with a maximum sidelobe level of -10 dB at frequencies from 0.3 THz to 1 THz.
随着太赫兹系统在工业领域和通信中的应用越来越多,高速、大面积扫描需要太赫兹波束形成和波束控制技术。作为一种有前景的波束控制方法,基于微机电系统(MEMS)的反射光栅已成功应用于太赫兹波束控制。到目前为止,由于反射器的垂直位移范围有限,衍射光栅效率相对较低。在本文中,我们提出了一种基于MEMS的可重构反射光栅设计,该光栅由多个亚波长反射器组成,由5位、高行程静电致动器驱动。我们改变每个光栅周期的反射器数量,并配置单个反射器的行程,使反射光栅形成闪耀光栅,以最大衍射光栅效率控制太赫兹波束。此外,我们提供了一个数学模型,用于计算由亚波长反射器组成的一般反射光栅反射的太赫兹波的辐射方向图。所设计光栅的计算和模拟辐射方向图表明,在0.3太赫兹至1太赫兹的频率范围内,我们可以将太赫兹波的角度控制在高达±56.4°的范围内,最大旁瓣电平为-10分贝。