Suppr超能文献

基于量纲分析的微生物燃料电池特征化的稳健相关性。

A robust correlation based on dimensional analysis to characterize microbial fuel cells.

机构信息

Centre for Environment and Sustainability, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.

Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom.

出版信息

Sci Rep. 2020 May 21;10(1):8407. doi: 10.1038/s41598-020-65375-5.

Abstract

We present a correlation for determining the power density of microbial fuel cells based on dimensional analysis. Important operational, design and biological parameters are non-dimensionalized using a selection of scaling variables. Experimental data from various microbial fuel cell studies operating over a wide range of system parameters are analyzed to attest accuracy of the model in predicting power output. The correlation predicts nonlinear dependencies between power density, substrate concentration, solution conductivity, external resistance, and electrode spacing. The straightforward applicability without the need for any significant computational resources, while preserving good level of accuracy; makes this correlation useful in focusing the experimental effort for the design and optimization of microbial fuel cells.

摘要

我们提出了一种基于量纲分析的微生物燃料电池功率密度的关联式。通过选择一系列无量纲化变量,将重要的操作、设计和生物学参数进行了无量纲化处理。对来自各种微生物燃料电池研究的实验数据进行了分析,以验证该模型在预测功率输出方面的准确性。该关联式预测了功率密度、底物浓度、溶液电导率、外接电阻和电极间距之间的非线性关系。该关联式具有无需大量计算资源且准确性高的特点,因此在微生物燃料电池的设计和优化方面具有很高的实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5725/7242356/f9ff3a24d43d/41598_2020_65375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验