Centre for Environment and Sustainability, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom.
Sci Rep. 2020 May 21;10(1):8407. doi: 10.1038/s41598-020-65375-5.
We present a correlation for determining the power density of microbial fuel cells based on dimensional analysis. Important operational, design and biological parameters are non-dimensionalized using a selection of scaling variables. Experimental data from various microbial fuel cell studies operating over a wide range of system parameters are analyzed to attest accuracy of the model in predicting power output. The correlation predicts nonlinear dependencies between power density, substrate concentration, solution conductivity, external resistance, and electrode spacing. The straightforward applicability without the need for any significant computational resources, while preserving good level of accuracy; makes this correlation useful in focusing the experimental effort for the design and optimization of microbial fuel cells.
我们提出了一种基于量纲分析的微生物燃料电池功率密度的关联式。通过选择一系列无量纲化变量,将重要的操作、设计和生物学参数进行了无量纲化处理。对来自各种微生物燃料电池研究的实验数据进行了分析,以验证该模型在预测功率输出方面的准确性。该关联式预测了功率密度、底物浓度、溶液电导率、外接电阻和电极间距之间的非线性关系。该关联式具有无需大量计算资源且准确性高的特点,因此在微生物燃料电池的设计和优化方面具有很高的实用价值。