Suppr超能文献

一种用于精确计算二阶超极化率的新型调谐范围分离密度泛函。

A new tuned range-separated density functional for the accurate calculation of second hyperpolarizabilities.

作者信息

Besalú-Sala Pau, Sitkiewicz Sebastian P, Salvador Pedro, Matito Eduard, Luis Josep M

机构信息

Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, M. Aurèlia Capmany 69, Girona, 17003, Spain.

出版信息

Phys Chem Chem Phys. 2020 Jun 7;22(21):11871-11880. doi: 10.1039/d0cp01291b. Epub 2020 May 22.

Abstract

The calculation of nonlinear optical properties (NLOPs) using density functional theory (DFT) remains a challenge in computational chemistry. Although the existing range-separated functionals display the best performance for the calculation of this type of properties, their errors strongly depend on the family of molecules studied. Herein, we have explored a new strategy to empirically tune the range-separated LC-BLYP method to improve the accuracy of the calculation of the second hyperpolarizabilities (γ), which are poorly described by current density functional approximations. First, we benchmarked nine of the most accurate commonly used range-separated hybrid and optimally tuned functionals (i.e. B3LYP, PBE0, BH&HLYP, M06-2X, MN15, ωB97X-D, CAM-B3LYP, LC-BLYP and OT-LC-BLYP) for the calculation of γ using as a reference the CCSD(T) values of a chemically diverse set of 60 molecules. Among these nine functionals, LC-BLYP gives the lowest average errors. We determined the value of the range-separation parameter ω required to reproduce the CCSD(T) second hyperpolarizabilities with the LC-BLYP functional (ω) for the set of 60 molecules. Our new tuned range-separated functional, Tα-LC-BLYP, uses a quadratic correlation between ω and a molecular descriptor in terms of the linear polarizability and the number of electrons in the molecule. The average error of the γ values obtained with Tα-LC-BLYP is reduced by half or more as compared with the most accurate among the nine density functional approximations benchmarked.

摘要

在计算化学中,使用密度泛函理论(DFT)计算非线性光学性质(NLOPs)仍然是一项挑战。尽管现有的范围分离泛函在计算这类性质时表现出最佳性能,但其误差强烈依赖于所研究的分子家族。在此,我们探索了一种新策略,以经验方式调整范围分离的LC - BLYP方法,来提高二阶超极化率(γ)计算的准确性,而目前的密度泛函近似对二阶超极化率的描述较差。首先,我们对九种最精确的常用范围分离杂化和优化调整泛函(即B3LYP、PBE0、BH&HLYP、M06 - 2X、MN15、ωB97X - D、CAM - B3LYP、LC - BLYP和OT - LC - BLYP)进行了基准测试,以一组60种化学性质多样的分子的耦合簇单双激发(CCSD(T))值为参考来计算γ。在这九种泛函中,LC - BLYP给出的平均误差最低。我们确定了用LC - BLYP泛函(ω)重现60种分子集合的CCSD(T)二阶超极化率所需的范围分离参数ω的值。我们新的调整后的范围分离泛函Tα - LC - BLYP,在ω与分子描述符之间使用了基于线性极化率和分子中电子数的二次相关性。与九种基准密度泛函近似中最精确的相比,用Tα - LC - BLYP获得的γ值的平均误差降低了一半或更多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验