Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.
Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
J Chem Theory Comput. 2023 Mar 28;19(6):1753-1764. doi: 10.1021/acs.jctc.2c01212. Epub 2023 Mar 2.
Key components of organic-based electro-optic devices are challenging to design or optimize because they exhibit nonlinear optical responses, which are difficult to model or rationalize. Computational chemistry furnishes the tools to investigate extensive collections of molecules in the quest for target compounds. Among the electronic structure methods that provide static nonlinear optical properties (SNLOPs), density functional approximations (DFAs) are often preferred because of their low cost/accuracy ratio. However, the accuracy of the SNLOPs critically depends on the amount of exact exchange and electron correlation included in the DFA, precluding the reliable calculation of many molecular systems. In this scenario, wave function methods such as MP2, CCSD, and CCSD(T) constitute a reliable alternative to compute SNLOPs. Unfortunately, the computational cost of these methods significantly restricts the size of molecules to study, a limitation that hampers the identification of molecules with significant nonlinear optical responses. This paper analyzes various flavors and alternatives to MP2, CCSD, and CCSD(T) methods that either drastically reduce the computational cost or improve their performance but were scarcely and unsystematically employed to compute SNLOPs. In particular, we have tested RI-MP2, RIJK-MP2, RIJCOSX-MP2 (with GridX2 and GridX4 setups), LMP2, SCS-MP2, SOS-MP2, DLPNO-MP2, LNO-CCSD, LNO-CCSD(T), DLPNO-CCSD, DLPNO-CCSD(T0), and DLPNO-CCSD(T1). Our results indicate that all these methods can be safely employed to calculate the dipole moment and the polarizability with average relative errors below 5% with respect to CCSD(T). On the other hand, the calculation of higher-order properties represents a challenge for LNO and DLPNO methods, which present severe numerical instabilities in computing the single-point field-dependent energies. RI-MP2, RIJK-MP2, or RIJCOSX-MP2 are cost-effective methods to compute first and second hyperpolarizabilities with a marginal average error with respect to canonical MP2 (up to 5% for β and up to 11% for γ). More accurate hyperpolarizabilities can be obtained with DLPNO-CCSD(T1); however, this method cannot be employed to obtain reliable second hyperpolarizabilities. These results open the way to obtain accurate nonlinear optical properties at a computational cost that can compete with current DFAs.
有机电光器件的关键组成部分的设计或优化具有挑战性,因为它们表现出非线性光学响应,这很难建模或合理化。计算化学为寻找目标化合物提供了研究大量分子的工具。在提供静态非线性光学性质 (SNLOPs) 的电子结构方法中,密度泛函近似 (DFA) 由于其低成本/准确性比而通常是首选。然而,SNLOPs 的准确性严重依赖于 DFA 中包含的精确交换和电子相关的数量,从而排除了许多分子系统的可靠计算。在这种情况下,MP2、CCSD 和 CCSD(T) 等波函数方法构成了计算 SNLOPs 的可靠替代方法。不幸的是,这些方法的计算成本大大限制了要研究的分子的大小,这一限制阻碍了具有显著非线性光学响应的分子的识别。本文分析了 MP2、CCSD 和 CCSD(T) 方法的各种变体和替代方法,这些方法要么大大降低了计算成本,要么提高了性能,但很少且无系统地用于计算 SNLOPs。特别是,我们已经测试了 RI-MP2、RIJK-MP2、RIJCOSX-MP2(带有 GridX2 和 GridX4 设置)、LMP2、SCS-MP2、SOS-MP2、DLPNO-MP2、LNO-CCSD、LNO-CCSD(T)、DLPNO-CCSD、DLPNO-CCSD(T0) 和 DLPNO-CCSD(T1)。我们的结果表明,所有这些方法都可以安全地用于计算偶极矩和极化率,相对于 CCSD(T) 的平均相对误差低于 5%。另一方面,高阶性质的计算对 LNO 和 DLPNO 方法构成了挑战,这些方法在计算单点场相关能量时存在严重的数值不稳定性。RI-MP2、RIJK-MP2 或 RIJCOSX-MP2 是计算一阶和二阶超极化率的经济高效方法,相对于规范 MP2 的平均误差较小(β 为 5%,γ 为 11%)。更准确的超极化率可以通过 DLPNO-CCSD(T1) 获得;然而,该方法不能用于获得可靠的二阶超极化率。这些结果为以与当前 DFA 竞争的计算成本获得准确的非线性光学性质开辟了道路。