Edwards Matthew R, Fasano Nicholas M, Mikhailova Julia M
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Phys Rev Lett. 2020 May 8;124(18):185004. doi: 10.1103/PhysRevLett.124.185004.
Relativistic high-order harmonic generation from solid-density plasma offers a compact source of coherent ultraviolet and x-ray light. For solid targets much thinner than the laser wavelength, the plasma thickness can be tuned to increase conversion efficiency; a reduction in total charge allows for balancing the laser and plasma driving forces, producing the most effective interaction. Unlike for semi-infinite plasma surfaces, we find that for ultrathin foil targets the dominant factor in the emission spectral shape is the finite width of the electron nanobunches, leading to a power-law exponent of approximately 10/3. Ultrathin foils produce higher-efficiency frequency conversion than solid targets for moderately relativistic (1<a_{0}<40) interactions and also provide unique insight into how the trajectories of individual electrons combine and interfere to generate reflected attosecond pulses.
来自固体密度等离子体的相对论性高次谐波产生提供了一种紧凑的相干紫外和x射线光源。对于比激光波长薄得多的固体靶,等离子体厚度可以调节以提高转换效率;总电荷的减少允许平衡激光和等离子体驱动力,产生最有效的相互作用。与半无限等离子体表面不同,我们发现对于超薄箔靶,发射光谱形状的主导因素是电子纳米束的有限宽度,导致幂律指数约为10/3。对于中等相对论性(1 < a₀ < 40)相互作用,超薄箔比固体靶产生更高效率的频率转换,并且还为单个电子的轨迹如何组合和干涉以产生反射阿秒脉冲提供了独特的见解。