Dunn Cory D, Akpınar Bala Anı, Sharma Vivek
Institute of Biotechnology, Helsinki Institute of Life Science, and
Institute of Biotechnology, Helsinki Institute of Life Science, and.
G3 (Bethesda). 2020 Jul 7;10(7):2477-2485. doi: 10.1534/g3.120.401312.
Hummingbirds in flight exhibit the highest mass-specific metabolic rate of all vertebrates. The bioenergetic requirements associated with sustained hovering flight raise the possibility of unique amino acid substitutions that would enhance aerobic metabolism. Here, we have identified a non-conservative substitution within the mitochondria-encoded cytochrome oxidase subunit I (COI) that is fixed within hummingbirds, but not among other vertebrates. This unusual change is also rare among metazoans, but can be identified in several clades with diverse life histories. We performed atomistic molecular dynamics simulations using bovine and hummingbird COI models, thereby bypassing experimental limitations imposed by the inability to modify mtDNA in a site-specific manner. Intriguingly, our findings suggest that COI amino acid position 153 (bovine numbering convention) provides control over the hydration and activity of a key proton channel in COX. We discuss potential phenotypic outcomes linked to this alteration encoded by hummingbird mitochondrial genomes.
飞行中的蜂鸟展现出所有脊椎动物中最高的质量比代谢率。与持续悬停飞行相关的生物能量需求增加了出现独特氨基酸替换的可能性,这些替换会增强有氧代谢。在这里,我们在鸟类线粒体编码的细胞色素氧化酶亚基I(COI)中鉴定出一个非保守替换,该替换在蜂鸟中是固定的,但在其他脊椎动物中不存在。这种不寻常的变化在后生动物中也很罕见,但在具有不同生活史的几个进化枝中可以识别出来。我们使用牛和蜂鸟的COI模型进行了原子分子动力学模拟,从而绕过了由于无法以位点特异性方式修饰线粒体DNA而带来的实验限制。有趣的是,我们的研究结果表明,COI氨基酸位置153(牛的编号惯例)控制着COX中一个关键质子通道的水合作用和活性。我们讨论了与蜂鸟线粒体基因组编码的这种改变相关的潜在表型结果。