Suppr超能文献

CT 纹理分析在乳头状肾细胞癌亚型鉴别中的应用。

CT texture analysis for the differentiation of papillary renal cell carcinoma subtypes.

机构信息

Department of Radiology, The Affiliated Hospital of Qingdao University, No. 1677, Wu Tai Shan Road, Huangdao District, Qingdao, Shandong, China.

Department of Information Management, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Abdom Radiol (NY). 2020 Nov;45(11):3860-3868. doi: 10.1007/s00261-020-02588-2.

Abstract

PURPOSE

The objective of this study was to investigate whether computed tomography texture analysis can be used to differentiate papillary renal cell carcinoma (PRCC) subtypes.

METHOD

Sixty-two PRCC tumors were retrospectively evaluated, with 30 type 1 tumors and 32 type 2 tumors. Texture parameters quantified from three-phase contrast-enhanced CT images were compared with least absolute shrinkage and selection operator (LASSO) regression. Receiver operating characteristic (ROC) analysis was performed, and the area under the ROC curve (AUC) was calculated for each parameter. The selected texture parameters of each phase were used to generate support vector machine (SVM) classifiers. Decision curve analysis (DCA) of the classification was performed.

RESULTS

The two texture parameters with the top two AUC values were - 333-7 Correlation (AUC = 0.772) and 45-7 Entropy (AUC = 0.753) in the corticomedullary phase, 333-4 Correlation (AUC = 0.832) and 45-7 Entropy (AUC = 0.841) in the nephrographic phase, and 135-7 Entropy (AUC = 0.858) and - 333-1 InformationMeasureCorr2 (AUC = 0.849) in the excretory phase. Entropy and Correlation have a high correlation with the two types of PRCC and are increased in type 2 PRCC. A model incorporating the texture parameters with the top two AUC values in each phase produced an AUC of 0.922 with an accuracy of 84% (sensitivity = 89% and specificity = 80%). The nephrographic-phase model and the model combining the texture parameters of the three phases can differentiate the two types with the largest net benefit.

CONCLUSIONS

Computed tomography texture analysis can be used to distinguish type 2 PRCC from type 1 with high accuracy, which may be clinically important.

摘要

目的

本研究旨在探讨 CT 纹理分析能否用于鉴别肾细胞癌(RCC)的不同亚型。

方法

回顾性分析 62 例肾细胞癌患者,其中 30 例为 1 型肿瘤,32 例为 2 型肿瘤。比较三时相增强 CT 图像的纹理参数与最小绝对收缩和选择算子(LASSO)回归。进行受试者工作特征(ROC)曲线分析,并计算每个参数的 ROC 曲线下面积(AUC)。对每一相位的选定纹理参数进行支持向量机(SVM)分类器生成。对分类的决策曲线分析(DCA)进行分析。

结果

皮质期 AUC 值最高的两个纹理参数为-333-7 Correlation(AUC=0.772)和 45-7 Entropy(AUC=0.753),髓质期 AUC 值最高的两个纹理参数为 333-4 Correlation(AUC=0.832)和 45-7 Entropy(AUC=0.841),分泌期 AUC 值最高的两个纹理参数为 135-7 Entropy(AUC=0.858)和-333-1 Information Measure Corr2(AUC=0.849)。熵和相关性与两种 PRCC 均具有高度相关性,在 2 型 PRCC 中增加。纳入每一相位 AUC 值最高的两个纹理参数的模型产生 AUC 值为 0.922,准确率为 84%(敏感性为 89%,特异性为 80%)。肾实质期模型和整合三个相位纹理参数的模型可最大程度地区分两种类型,获得最大净收益。

结论

CT 纹理分析可用于准确鉴别 2 型 PRCC 与 1 型 PRCC,这可能具有重要的临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验