Suppr超能文献

对优质胚胎中每个分裂球进行下一代测序分析:揭示卵裂期胚胎中胚胎非整倍体的起源和机制。

Next-generation sequencing analysis of each blastomere in good-quality embryos: insights into the origins and mechanisms of embryonic aneuploidy in cleavage-stage embryos.

机构信息

Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.

Yikon Genomics Co. Ltd, Shanghai, People's Republic of China.

出版信息

J Assist Reprod Genet. 2020 Jul;37(7):1711-1718. doi: 10.1007/s10815-020-01803-9. Epub 2020 May 22.

Abstract

PURPOSE

To explore the whole-chromosome status, origins, and mechanisms of chromosomal abnormalities in good-quality cleavage embryos using multiple annealing and looping-based amplification cycle (MALBAC) sequencing.

METHODS

The embryos studied came from7 patients (maternal aged 26-35) who had healthy birth from the same IVF cycles. These 21 frozen day 3 good-quality embryos were thawed and disaggregated into individual blastomere. Each blastomere was collected and analyzed by MALBAC sequencing.

RESULTS

Conclusive results were obtained from a high percentage of blastomeres (95.3%). A total of 46.6% of blastomeres were diploid, 53.4% were abnormal, and 28.0% had complex aneuploidy. Out of 21 embryos, 3 (14.3%) were normal and 18 (85.7%) were mosaics, showing the occurrence of mitotic errors; aneuploidy was confirmed in all cells of 4 of the 18 embryos, which showed the coexistence of meiotic errors. Conclusive results were obtained from all blastomeres of 15 embryos (71.4%, 15/21), which enabled us to reconstruct the cell lineage on the basis of the chromosomal content of the blastomeres in each division. There were 9 mitotic errors (8.7%, 9/103): nondisjunction accounted for 88.9% (8/9), and endoreplication accounted for 11.1% (1/9).

CONCLUSIONS

In good-quality embryos, there was a high rate and diverse array of chromosomal abnormalities. Morphological evaluation does not appear to assist in the reduction in meiotic errors from parental origins. Mitotic errors were common, and nondisjunction was found to be the main mechanism causing malsegregation during the cleavage divisions.

摘要

目的

利用多重退火环状循环扩增测序(MALBAC)技术探索优质卵裂胚胎的整条染色体状态、起源和染色体异常的机制。

方法

研究胚胎来自于 7 名(母亲年龄 26-35 岁)患者,他们在同一个 IVF 周期中拥有健康的分娩。这些 21 个冷冻的第 3 天优质胚胎解冻并分散成单个卵裂球。每个卵裂球通过 MALBAC 测序进行收集和分析。

结果

高比例的卵裂球(95.3%)获得了明确的结果。总共 46.6%的卵裂球为二倍体,53.4%为异常,28.0%为复杂非整倍体。21 个胚胎中,3 个(14.3%)为正常,18 个(85.7%)为嵌合体,表明存在有丝分裂错误;18 个胚胎中的 4 个胚胎的所有细胞都证实存在非整倍体,表明存在减数分裂错误的共存。15 个胚胎(71.4%,15/21)的所有卵裂球都获得了明确的结果,这使我们能够根据每个分裂中卵裂球的染色体含量重建细胞谱系。有 9 个有丝分裂错误(8.7%,9/103):非分离占 88.9%(8/9),内复制占 11.1%(1/9)。

结论

在优质胚胎中,染色体异常的发生率和种类都很高。形态学评估似乎并不能帮助减少来自父母的减数分裂错误。有丝分裂错误很常见,非分离被发现是导致卵裂分裂中非同源染色体分离的主要机制。

相似文献

5
[Analysis of chromosomal mosaicism in good quality cleavage embryos].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2020 Sep 10;37(9):934-937. doi: 10.3760/cma.j.cn511374-20191129-00612.
6
Origins and rates of aneuploidy in human blastomeres.
Fertil Steril. 2012 Feb;97(2):395-401. doi: 10.1016/j.fertnstert.2011.11.034. Epub 2011 Dec 21.
8
Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos.
Hum Reprod. 2013 Jan;28(1):256-64. doi: 10.1093/humrep/des362. Epub 2012 Oct 9.
9
Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development.
PLoS Genet. 2015 Oct 22;11(10):e1005601. doi: 10.1371/journal.pgen.1005601. eCollection 2015 Oct.

引用本文的文献

1
Aneuploidy detection in pooled polar bodies using rapid nanopore sequencing.
J Assist Reprod Genet. 2024 May;41(5):1261-1271. doi: 10.1007/s10815-024-03108-7. Epub 2024 Apr 20.
2
The Relationship between Human Embryo Parameters and De Novo Chromosomal Abnormalities in Preimplantation Genetic Testing Cycles.
Int J Endocrinol. 2022 Mar 19;2022:9707081. doi: 10.1155/2022/9707081. eCollection 2022.
3
Segmental duplications and monosomies are linked to in vitro developmental arrest.
J Assist Reprod Genet. 2021 Aug;38(8):2183-2192. doi: 10.1007/s10815-021-02147-8. Epub 2021 Mar 19.
4
Applications of Single-Cell DNA Sequencing.
Annu Rev Genomics Hum Genet. 2021 Aug 31;22:171-197. doi: 10.1146/annurev-genom-111320-090436. Epub 2021 Mar 15.

本文引用的文献

1
The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos.
Hum Reprod. 2017 Dec 1;32(12):2549-2560. doi: 10.1093/humrep/dex324.
2
Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience.
Fertil Steril. 2017 May;107(5):1173-1180. doi: 10.1016/j.fertnstert.2017.03.007. Epub 2017 Apr 19.
3
Chromosomal mosaicism detected during preimplantation genetic screening: results of a worldwide Web-based survey.
Fertil Steril. 2017 May;107(5):1092-1097. doi: 10.1016/j.fertnstert.2017.02.119. Epub 2017 Apr 19.
4
Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts.
Hum Genet. 2017 Jul;136(7):805-819. doi: 10.1007/s00439-017-1797-4. Epub 2017 Apr 9.
5
Embryos with morphokinetic abnormalities may develop into euploid blastocysts.
Reprod Biomed Online. 2017 Feb;34(2):137-146. doi: 10.1016/j.rbmo.2016.11.008. Epub 2016 Nov 24.
6
Early human embryos are naturally aneuploid-can that be corrected?
J Assist Reprod Genet. 2017 Jan;34(1):15-21. doi: 10.1007/s10815-016-0845-7. Epub 2016 Nov 29.
7
Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology.
Cochrane Database Syst Rev. 2016 Jun 30(6):CD002118. doi: 10.1002/14651858.CD002118.pub5.
8
Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges.
Genet Med. 2017 Jan;19(1):83-89. doi: 10.1038/gim.2016.69. Epub 2016 Jun 23.
9
Paternal Age and Numerical Chromosome Abnormalities in Human Spermatozoa.
Cytogenet Genome Res. 2016;148(4):241-8. doi: 10.1159/000446724. Epub 2016 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验