Suppr超能文献

脑 MRI 弥散编码方向数影响多发性硬化症的基于束的空间统计学结果。

Brain MRI Diffusion Encoding Direction Number Affects Tract-Based Spatial Statistics Results in Multiple Sclerosis.

机构信息

Department of Neurology, University of Szeged, Szeged, Hungary.

Department of Psychiatry, University of Szeged, Szeged, Hungary.

出版信息

J Neuroimaging. 2020 Jul;30(4):512-522. doi: 10.1111/jon.12705. Epub 2020 May 24.

Abstract

BACKGROUND AND PURPOSE

Diffusion tensor imaging (DTI) is a promising approach to detect the underlying brain pathology. These alterations can be seen in several diseases such as multiple sclerosis. Tract-based spatial statistics (TBSS) is an easy to use and robust way for analyzing diffusion data. The effect of acquisition parameters of DTI on TBSS has not been evaluated, especially the number of diffusion encoding directions (NDED), which is directly proportional with scan time.

METHODS

We analyzed a large set of DTI data of healthy controls (N = 126) and multiple sclerosis patients (N = 78). The highest NDED (60 directions) was reduced and a tensor calculation was done separately for every subset. We calculated the mean and standard deviation of DTI parameters under the white matter mask. Moreover, the FMRIB Software Library TBSS pipeline was used on DTI images with 15, 30, 45, and 60 directions to compare differences between groups. Mean DTI parameters were compared between groups as a function of NDED.

RESULTS

The mean value of FA and AD decreased with increasing number of directions. This was more pronounced in areas with smaller FA values. RD and MD were constant. The skeleton size reduced with elevating NDED along with the number of significant voxels. The TBSS analysis showed significant differences between groups throughout the majority of the skeleton and the group difference was associated with NDED.

CONCLUSION

Our results suggested that results of TBSS depended on the NDED, which should be considered when comparing DTI data with varying protocols.

摘要

背景与目的

弥散张量成像(DTI)是一种有前途的方法,可以检测潜在的脑病理学。这些改变可以在几种疾病中看到,如多发性硬化症。基于束的空间统计学(TBSS)是一种易于使用且强大的分析弥散数据的方法。DTI 的采集参数对 TBSS 的影响尚未得到评估,特别是扩散编码方向的数量(NDED),它与扫描时间成正比。

方法

我们分析了一大组健康对照者(N = 126)和多发性硬化症患者(N = 78)的 DTI 数据。最高的 NDED(60 个方向)被减少,并为每个子集分别进行张量计算。我们在白质掩模下计算 DTI 参数的平均值和标准差。此外,使用 FMRIB 软件库 TBSS 流水线对具有 15、30、45 和 60 个方向的 DTI 图像进行分析,以比较组间差异。作为 NDED 的函数,比较组间的平均 DTI 参数。

结果

FA 和 AD 的平均值随着方向数的增加而降低。在 FA 值较小的区域更为明显。RD 和 MD 保持不变。随着 NDED 的增加,骨架大小减小,同时显著体素的数量也增加。TBSS 分析显示,在大多数骨架中,组间存在显著差异,并且组间差异与 NDED 有关。

结论

我们的结果表明,TBSS 的结果取决于 NDED,在比较具有不同方案的 DTI 数据时应考虑 NDED。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验