Suppr超能文献

痕量钠实现的高性能无碳酸盐锂石榴石界面

A High-Performance Carbonate-Free Lithium|Garnet Interface Enabled by a Trace Amount of Sodium.

作者信息

Fu Xingjie, Wang Tiantian, Shen Wenzhong, Jiang Miaoli, Wang Youwei, Dai Qiushi, Wang Da, Qiu Zhenping, Zhang Yelong, Deng Kuirong, Zeng Qingguang, Zhao Ning, Guo Xiangxin, Liu Zheng, Liu Jianjun, Peng Zhangquan

机构信息

School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China.

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Chinese Academy of Sciences, Shanghai, 200050, China.

出版信息

Adv Mater. 2020 Jul;32(26):e2000575. doi: 10.1002/adma.202000575. Epub 2020 May 25.

Abstract

Garnet-type solid-state electrolytes (SSEs) are promising for the realization of next-generation high-energy-density Li metal batteries. However, a critical issue associated with the garnet electrolytes is the poor physical contact between the Li anode and the garnet SSE and the resultant high interfacial resistance. Here, it is reported that the Li|garnet interface challenge can be addressed by using Li metal doped with 0.5 wt% Na (denoted as Li*) and melt-casting the Li* onto the garnet SSE surface. A mechanistic study, using Li La Zr Ta O (LLZTO) as a model SSE, reveals that Li CO resides within the grain boundaries of newly polished LLZTO pellet, which is difficult to remove and hinders the wetting process. The Li* melt can phase-transfer the Li CO from the LLZTO grain boundary to the Li*'s top surface, and therefore facilitates the wetting process. The obtained Li*|LLZTO demonstrates a low interfacial resistance, high rate capability, and long cycle life, and can find applications in future all-solid-state batteries (e.g., Li*|LLZTO|LiFePO ).

摘要

石榴石型固态电解质(SSEs)对于实现下一代高能量密度锂金属电池很有前景。然而,与石榴石电解质相关的一个关键问题是锂阳极与石榴石SSE之间的物理接触不良以及由此产生的高界面电阻。在此,据报道,通过使用掺杂0.5 wt%钠的锂金属(表示为Li*)并将Li熔铸到石榴石SSE表面,可以解决Li|石榴石界面的挑战。一项以LiLaZrTaO(LLZTO)作为模型SSE的机理研究表明,Li₂CO₃存在于新抛光的LLZTO颗粒的晶界内,难以去除且阻碍了润湿过程。Li熔体可以将Li₂CO₃从LLZTO晶界相转移到Li的顶面,因此促进了润湿过程。所获得的Li|LLZTO表现出低界面电阻、高倍率性能和长循环寿命,并且可应用于未来的全固态电池(例如,Li*|LLZTO|LiFePO₄)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验