State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
Angew Chem Int Ed Engl. 2023 Jul 3;62(27):e202305099. doi: 10.1002/anie.202305099. Epub 2023 May 19.
Garnet oxides such as Li La Zr Ta O (LLZTO) are promising solid electrolyte materials for all-solid-state lithium-metal batteries because of high ionic conductivity, low electronic leakage, and wide electrochemical stability window. While LLZTO has been frequently discussed to be stable against lithium metal anode, it is challenging to achieve and maintain good solid-on-solid wetting at the metal/ceramic interface in both processing and extended electrochemical cycling. Here we address the challenge by a powder-form magnesium nitride additive, which reacts with the lithium metal anode to produce well-dispersed lithium nitride. The in situ formed lithium nitride promotes reactive wetting at the Li/LLZTO interface, which lowers interfacial resistance, increases critical current density (CCD), and improves cycling stability of the electrochemical cells. The additive recipe has been diversified to titanium nitride, zirconium nitride, tantalum nitride, and niobium nitride, thus supporting the general concept of reactive dispersion-plus-wetting. Such a design can be extended to other solid-state devices for better functioning and extended cycle life.
石榴石氧化物,如 LiLaZrTaO(LLZTO),由于其高离子电导率、低电子泄漏和宽电化学稳定窗口,是全固态锂金属电池有前途的固体电解质材料。虽然经常讨论 LLZTO 对锂金属阳极稳定,但在加工和扩展电化学循环过程中,在金属/陶瓷界面实现和保持良好的固-固润湿性具有挑战性。在这里,我们通过添加粉末状氮化镁来解决这一挑战,氮化镁与锂金属阳极反应生成分散良好的氮化锂。原位形成的氮化锂促进了 Li/LLZTO 界面的反应性润湿,降低了界面电阻,增加了临界电流密度(CCD),并提高了电化学电池的循环稳定性。添加剂配方已多样化,包括氮化钛、氮化锆、氮化钽和氮化铌,从而支持反应性分散加润湿的一般概念。这种设计可以扩展到其他固态设备,以实现更好的功能和延长循环寿命。