Suppr超能文献

用于元素映射的图像序列处理技术进展。

Developments in processing image sequences for elemental mapping.

作者信息

Bonnet N, Colliex C, Mory C, Tence M

机构信息

Unité de Service de Microscopie Electronique Analytique et Quantitative, Université Paris Sud, Orsay, France.

出版信息

Scanning Microsc Suppl. 1988;2:351-64.

PMID:3244973
Abstract

Elemental mapping consists in searching the distribution of a given chemical species over an extended specimen area, with relation to topographical or structural features. It can be done with EELS core signals from a combination of several energy filtered images. One major problem encountered in the processing of such sequences of images lies in the extrapolation errors due to a difficult estimate of the background below the characteristic signal. The chosen method must be sufficiently reliable to avoid the risk of both "false positive" and "false negative" values: the first category may stem from spurious signals or from a non-satisfactory fit of the background. The second category is mainly due to a limited sensitivity. The EELS signal is often much weaker than the background intensity; an extrapolation error can therefore transform a negative value into a positive one, or vice versa. The purpose of the present contribution is to check the validity of the processing at different levels: i) different mathematical models of background; ii) different types of fitting procedures (one-parameter and two-parameters fits); iii) different fitting methods and several associated manipulations, such as a quasi local estimation of the involved fitting parameters. The statistical validity of those techniques is discussed through several tests on real images obtained from different specimens (Co/CeO2 catalysts, ferritin molecules, U and Tb staining clusters). Progress is made on the way of quantitative elemental mapping at a given confidence level, and towards the identification of single atoms.

摘要

元素映射在于搜索给定化学物种在扩展样本区域上相对于地形或结构特征的分布。它可以通过对多个能量过滤图像组合得到的电子能量损失谱(EELS)核心信号来完成。处理此类图像序列时遇到的一个主要问题在于,由于难以估计特征信号下方的背景,会产生外推误差。所选择的方法必须足够可靠,以避免出现“假阳性”和“假阴性”值的风险:第一类可能源于虚假信号或背景拟合不理想。第二类主要是由于灵敏度有限。EELS信号通常比背景强度弱得多;因此,外推误差可能会将负值转换为正值,反之亦然。本论文的目的是在不同层面检验处理的有效性:i)背景的不同数学模型;ii)不同类型的拟合程序(单参数和双参数拟合);iii)不同的拟合方法以及一些相关操作,例如对所涉及拟合参数的准局部估计。通过对从不同样本(Co/CeO₂催化剂、铁蛋白分子、U和Tb染色簇)获得的真实图像进行的多项测试,讨论了这些技术的统计有效性。在给定置信水平下进行定量元素映射以及识别单个原子方面取得了进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验