Suppr超能文献

无水 β-咖啡因和水合咖啡因晶型的相对湿度-温度转变边界。

Relative humidity-temperature transition boundaries for anhydrous β-caffeine and caffeine hydrate crystalline forms.

机构信息

Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, U.S.A.

出版信息

J Food Sci. 2020 Jun;85(6):1815-1826. doi: 10.1111/1750-3841.15114. Epub 2020 May 25.

Abstract

Caffeine is a hydrate-forming polymorphic crystalline compound that can exist in α, β, and hydrate forms. Phase transitions between hydrate and anhydrous forms of a crystalline ingredient, and related water migration, can create product quality challenges. The objective of this study was to determine the relative humidity (RH)-temperature phase boundary between anhydrous β-caffeine and caffeine hydrate. The β-caffeine→caffeine hydrate and caffeine hydrate→β-caffeine RH-temperature transition boundaries were determined from 20 to 45 °C using a combination of water activity (a ) controlled solution and vapor-mediated equilibration, moisture sorption, powder X-ray diffraction, and Fourier-transform infrared spectroscopy techniques. Two transition boundaries were measured: the β-caffeine→caffeine hydrate transition boundary (0.835 ± 0.027 a at 25 °C) was higher than the caffeine hydrate→β-caffeine transition boundary (0.625 ± 0.003 a at 25 °C). Moisture sorption rates for β-caffeine, even at high RHs (>84% RH), were slow. However, caffeine hydrate rapidly dehydrated at low RHs (<30% RH) into a metastable transitional anhydrous state with a similar X-ray diffraction pattern to metastable α-caffeine. Exposing this dehydrated hydrate to higher RHs (>65% RH) at lower temperatures (20 to 30 °C) resulted in full restoration to a 4/5 caffeine hydrate. This transitional anhydrous state was unstable and converted to a less hygroscopic state after annealing at 50 °C and 0% RH for 1 day. It was postulated that the caffeine hydrate→β-caffeine was the true β-caffeine↔caffeine hydrate phase boundary and that β-caffeine could be metastable above the caffeine hydrate→β-caffeine transition boundary. These caffeine RH-temperature transition boundaries could be used for selecting formulation and storage conditions to maintain the desired caffeine crystalline form. PRACTICAL APPLICATION: Caffeine can exist as either an anhydrous (without water) or hydrate (internalized water) crystalline state. The stability of each caffeine crystalline form is dictated by humidity (or water activity) and temperature, and these environmental stability boundaries for the caffeine crystalline forms are reported in this manuscript. Conversions between the two crystalline states can lead to deleterious effects; for example, the presence of caffeine hydrate crystals in a low water activity food (e.g., powder) could lead to the relocation of the water in caffeine to other ingredients in the food system, leading to unwanted water-solid interactions that could cause clumping and/or degradation.

摘要

咖啡因是一种水合形成的多晶态结晶化合物,可存在于 α、β 和水合物形式中。结晶成分的水合物和无水形式之间的相转变,以及相关的水分迁移,会给产品质量带来挑战。本研究的目的是确定无水 β-咖啡因和咖啡因水合物的相对湿度 (RH)-温度相界。使用水活度 (a) 控制溶液和蒸汽介导的平衡、水分吸附、粉末 X 射线衍射和傅里叶变换红外光谱技术,从 20 到 45°C 确定了 β-咖啡因→咖啡因水合物和咖啡因水合物→β-咖啡因 RH-温度转变边界。测量了两个转变边界:β-咖啡因→咖啡因水合物的转变边界 (25°C 时为 0.835±0.027 a) 高于咖啡因水合物→β-咖啡因的转变边界 (25°C 时为 0.625±0.003 a)。即使在高 RH(>84%RH)下,β-咖啡因的水分吸附速率也很慢。然而,咖啡因水合物在低 RH(<30%RH)下迅速脱水,进入一种具有类似 X 射线衍射图案的亚稳态过渡无水状态到亚稳态 α-咖啡因。将这种脱水的水合物暴露于较低温度(20 至 30°C)的较高 RH(>65%RH)下,会完全恢复到 4/5 咖啡因水合物。这种过渡无水状态不稳定,在 50°C 和 0%RH 下退火 1 天后,会转化为吸湿能力较低的状态。据推测,咖啡因水合物→β-咖啡因是真正的β-咖啡因↔咖啡因水合物相界,并且在咖啡因水合物→β-咖啡因转变边界之上,β-咖啡因可能是亚稳态的。这些咖啡因 RH-温度转变边界可用于选择配方和储存条件,以保持所需的咖啡因结晶形式。实际应用:咖啡因可以以无水(无水分)或水合物(内部水分)的结晶状态存在。每种咖啡因结晶形式的稳定性由湿度(或水活度)和温度决定,本研究报告了咖啡因结晶形式的这些环境稳定性边界。两种结晶状态之间的转化会导致有害影响;例如,低水活度食品(例如粉末)中存在咖啡因水合物晶体,可能导致咖啡因中的水分转移到食品系统中的其他成分中,导致不必要的水-固相互作用,从而导致结块和/或降解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验