Suppr超能文献

基于计算机的 HIV-1 病毒 gp120 单链 DNA 适体的筛选

In Silico Selection of Gp120 ssDNA Aptamer to HIV-1.

机构信息

Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

出版信息

SLAS Discov. 2020 Oct;25(9):1087-1093. doi: 10.1177/2472555220923331. Epub 2020 May 26.

Abstract

Nucleic acid aptamers that specifically bind to other molecules are mostly obtained through the systematic evolution of ligands by exponential enrichment (SELEX). Because SELEX is a time-consuming procedure, the in silico design of specific aptamers has recently become a progressive approach. HIV-1 surface glycoprotein gp120, which is involved in the early stages of HIV-1 infection, is an attractive target for RNA and DNA aptamer selection. In this study, four single-stranded DNA aptamers, referred to as HD2, HD3, HD4, and HD5, that had the ability of HIV-1 inhibition were designed in silico. In a proposed non-SELEX approach, some parts of the B40 aptamer sequence, which interacted with gp120, were isolated and considered as a separate aptamer sequence. Then, to obtain the best docking scores of the HDOCK server and Hex software, some modifications, insertions, and deletions were applied to each selected sequence. Finally, the cytotoxicity and HIV inhibition of the selected aptamers were evaluated experimentally. Results demonstrated that the selected aptamers could inhibit HIV-1 infection by up to 80%, without any cytotoxicity. Therefore, this new non-SELEX approach could be considered a simple, fast, and efficient method for aptamer selection.

摘要

通过指数富集配体系统进化(SELEX)技术,能够获得特异性结合其他分子的核酸适体。由于 SELEX 是一个耗时的过程,最近,特异性适体的计算设计已成为一种渐进的方法。HIV-1 表面糖蛋白 gp120 参与 HIV-1 感染的早期阶段,是 RNA 和 DNA 适体选择的一个有吸引力的靶标。在这项研究中,通过计算设计,合成了四个能够抑制 HIV-1 的单链 DNA 适体,分别称为 HD2、HD3、HD4 和 HD5。在一种非 SELEX 方法中,分离了与 gp120 相互作用的 B40 适体序列的一部分,并将其视为单独的适体序列。然后,为了获得 HDOCK 服务器和 Hex 软件的最佳对接分数,对每个选定的序列进行了一些修饰、插入和删除。最后,实验评估了所选适体的细胞毒性和 HIV 抑制作用。结果表明,所选适体能够抑制高达 80%的 HIV-1 感染,而没有任何细胞毒性。因此,这种新的非 SELEX 方法可以被认为是一种简单、快速和有效的适体选择方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验