Suppr超能文献

金属有机框架材料中配体的缓慢去除可使衍生纳米材料具有更高的电催化性能。

Slower Removing Ligands of Metal Organic Frameworks Enables Higher Electrocatalytic Performance of Derived Nanomaterials.

作者信息

Hu Qi, Huang Xiaowan, Wang Ziyu, Li Guomin, Han Zhen, Yang Hengpan, Liao Peng, Ren XiangZhong, Zhang Qianling, Liu Jianhong, He Chuanxin

机构信息

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.

Department of Cell Research and Development, Farasis Energy Inc, Hayward, CA, 94545, USA.

出版信息

Small. 2020 Jun;16(25):e2002210. doi: 10.1002/smll.202002210. Epub 2020 May 26.

Abstract

The widely used route of high-temperature pyrolysis for transformation of Prussian blue analogs (PBAs) to functional nanomaterials leads to the fast removal of CN ligands, and thus the formation of large metal aggregates and the loss of porous structures inside PBAs. Here, a controllable pyrolysis route at low temperature is reported for retaining the confined effect of CN ligands to metal cations during the whole pyrolysis process, thereby preparing high-surface-area cubes comprising disordered bimetallic oxides (i.e., Co O and Fe O ) nanoparticles. The disordered structure of Co O enables the exposure of abundant oxygen vacancies. Notably, for the first time, it is found that the in situ generated CoOOH during the oxygen evolution reaction (OER) can inherit the oxygen vacancies of pristine Co O (i.e., before OER), and such CoOOH with abundant oxygen vacancies adsorbs two OH in the following Co to Co for markedly promoting OER. However, during the similar step, the ordered Co O with less oxygen vacancies only involves one OH, resulting in the additional overpotentials for adsorbing OH. Consequently, with high surface area and disordered Co O , the as-synthesized electrocatalysts have a low potential of 237 mV at 10 mA cm , surpassing most of reported electrocatalysts.

摘要

广泛使用的将普鲁士蓝类似物(PBAs)转化为功能纳米材料的高温热解途径会导致CN配体快速去除,从而形成大的金属聚集体并导致PBAs内部多孔结构的丧失。在此,报道了一种低温可控热解途径,用于在整个热解过程中保持CN配体对金属阳离子的限制作用,从而制备包含无序双金属氧化物(即CoO和FeO)纳米颗粒的高表面积立方体。CoO的无序结构使得大量氧空位得以暴露。值得注意的是,首次发现析氧反应(OER)过程中原位生成的CoOOH可以继承原始CoO(即OER之前)的氧空位,并且这种具有大量氧空位的CoOOH在随后的Co到Co过程中吸附两个OH,从而显著促进OER。然而,在类似步骤中,氧空位较少的有序CoO仅涉及一个OH,导致吸附OH时产生额外的过电位。因此,由于具有高表面积和无序的CoO,所合成的电催化剂在10 mA cm时具有237 mV的低电位,超过了大多数已报道的电催化剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验