基于系统变换的全状态约束纯反馈系统神经控制方法:基于干扰观测器。

System Transformation-Based Neural Control for Full-State-Constrained Pure-Feedback Systems via Disturbance Observer.

出版信息

IEEE Trans Cybern. 2022 Mar;52(3):1479-1489. doi: 10.1109/TCYB.2020.2988897. Epub 2022 Mar 11.

Abstract

In this article, a novel disturbance observer-based adaptive neural control (ANC) scheme is proposed for full-state-constrained pure-feedback nonlinear systems using a new system transformation method. A nonlinear transformation function in a uniformed design framework is constructed to convert the original states with constrained bounds into the ones without any constraints. By combining an auxiliary first-order filter, an augmented nonlinear system without any state constraint is derived to circumvent the difficulty of the controller design caused by the nonaffine input signal. Based on the augmented nonlinear system, a nonlinear disturbance observer (NDO) is designed to enhance the disturbance rejection ability. Subsequently, the NDO-based ANC scheme is presented by combining the second-order filters with backstepping. The proposed scheme confines all states within the predefined bounds, eliminates the condition on both the known sign and bounds of control gains, improves the robustness of the closed-loop system, and alleviates the computational burden. Two simulation examples are performed to show the validity of the presented scheme.

摘要

本文提出了一种基于新型系统变换方法的全状态约束纯反馈非线性系统的新型干扰观测器自适应神经控制(ANC)方案。在统一设计框架中构建了一个非线性变换函数,将具有约束边界的原始状态转换为没有任何约束的状态。通过结合辅助一阶滤波器,推导出一个没有任何状态约束的增广非线性系统,以规避由非仿射输入信号引起的控制器设计困难。基于增广非线性系统,设计了非线性干扰观测器(NDO),以提高干扰抑制能力。随后,通过结合二阶滤波器与反推法,提出了基于 NDO 的 ANC 方案。所提出的方案将所有状态限制在预定义的边界内,消除了控制增益的已知符号和边界条件,提高了闭环系统的鲁棒性,并减轻了计算负担。通过两个仿真示例验证了所提出方案的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索