Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
Department of Zoology, University of Oxford, Oxford, United Kingdom.
PLoS Biol. 2020 May 26;18(5):e3000720. doi: 10.1371/journal.pbio.3000720. eCollection 2020 May.
The type VI secretion system (T6SS) is a nanomachine used by many bacteria to drive a toxin-laden needle into other bacterial cells. Although the potential to influence bacterial competition is clear, the fitness impacts of wielding a T6SS are not well understood. Here we present a new agent-based model that enables detailed study of the evolutionary costs and benefits of T6SS weaponry during competition with other bacteria. Our model identifies a key problem with the T6SS. Because of its short range, T6SS activity becomes self-limiting, as dead cells accumulate in its way, forming "corpse barriers" that block further attacks. However, further exploration with the model presented a solution to this problem: if injected toxins can quickly lyse target cells in addition to killing them, the T6SS becomes a much more effective weapon. We tested this prediction with single-cell analysis of combat between T6SS-wielding Acinetobacter baylyi and T6SS-sensitive Escherichia coli. As predicted, delivery of lytic toxins is highly effective, whereas nonlytic toxins leave large patches of E. coli alive. We then analyzed hundreds of bacterial species using published genomic data, which suggest that the great majority of T6SS-wielding species do indeed use lytic toxins, indicative of a general principle underlying weapon evolution. Our work suggests that, in the T6SS, bacteria have evolved a disintegration weapon whose effectiveness often rests upon the ability to break up competitors. Understanding the evolutionary function of bacterial weapons can help in the design of probiotics that can both establish well and eliminate problem species.
VI 型分泌系统(T6SS)是许多细菌用来将装满毒素的针打入其他细菌细胞的纳米机器。虽然使用 T6SS 来影响细菌竞争的潜力是显而易见的,但对于挥舞 T6SS 的适应性影响还不是很清楚。在这里,我们提出了一个新的基于代理的模型,该模型可以在与其他细菌竞争时,详细研究 T6SS 武器的进化成本和收益。我们的模型确定了 T6SS 的一个关键问题。由于其射程较短,T6SS 活性会自我限制,因为死细胞在其行进过程中堆积,形成“尸体屏障”,阻止进一步的攻击。然而,通过模型进一步探索,我们找到了一个解决这个问题的方案:如果注入的毒素可以在杀死靶细胞的同时迅速溶解它们,那么 T6SS 就会成为一种更有效的武器。我们通过对携带 T6SS 的不动杆菌和 T6SS 敏感的大肠杆菌之间的单细胞分析来验证了这个预测。正如所预测的那样,溶细胞毒素的传递非常有效,而非溶细胞毒素则使大量的大肠杆菌存活下来。然后,我们使用已发表的基因组数据分析了数百种细菌物种,这表明绝大多数携带 T6SS 的物种确实使用溶细胞毒素,这表明武器进化的一个普遍原则。我们的工作表明,在 T6SS 中,细菌已经进化出一种瓦解武器,其有效性通常取决于打破竞争对手的能力。了解细菌武器的进化功能有助于设计既能建立良好种群又能消除问题物种的益生菌。