Suppr超能文献

预测波动环境中抗生素敏感和耐药物种的群落动态。

Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments.

机构信息

Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.

出版信息

J R Soc Interface. 2020 May;17(166):20190776. doi: 10.1098/rsif.2019.0776. Epub 2020 May 27.

Abstract

Microbes occupy almost every niche within and on their human hosts. Whether colonizing the gut, mouth or bloodstream, microorganisms face temporal fluctuations in resources and stressors within their niche but we still know little of how environmental fluctuations mediate certain microbial phenotypes, notably antimicrobial-resistant ones. For instance, do rapid or slow fluctuations in nutrient and antimicrobial concentrations select for, or against, resistance? We tackle this question using an ecological approach by studying the dynamics of a synthetic and pathogenic microbial community containing two species, one sensitive and the other resistant to an antibiotic drug where the community is exposed to different rates of environmental fluctuation. We provide mathematical models, supported by experimental data, to demonstrate that simple community outcomes, such as competitive exclusion, can shift to coexistence and ecosystem bistability as fluctuation rates vary. Theory gives mechanistic insight into how these dynamical regimes are related. Importantly, our approach highlights a fundamental difference between resistance in single-species populations, the context in which it is usually assayed, and that in communities. While fast environmental changes are known to select against resistance in single-species populations, here we show that they can promote the resistant species in mixed-species communities. Our theoretical observations are verified empirically using a two-species community.

摘要

微生物几乎占据了其人类宿主内外的每一个生态位。无论是在肠道、口腔还是血液中定殖,微生物在其生态位内都会面临资源和压力的时间波动,但我们仍然不太了解环境波动如何调节某些微生物表型,特别是抗微生物药物的表型。例如,营养物质和抗微生物药物浓度的快速或缓慢波动是选择还是抑制耐药性?我们通过研究含有两种微生物的合成和致病性微生物群落的动态来解决这个问题,其中一种对一种抗生素药物敏感,另一种具有抗药性,而该群落会受到不同的环境波动速率的影响。我们提供了数学模型,辅以实验数据,证明了简单的群落结果,如竞争排斥,可以随着波动速率的变化而转变为共存和生态系统双稳定性。理论为这些动态状态如何相关提供了机制上的见解。重要的是,我们的方法突出了通常在单物种种群中检测到的耐药性与在群落中检测到的耐药性之间的根本区别。虽然众所周知,快速的环境变化会对单物种种群中的耐药性产生选择压力,但我们在这里表明,它们可以促进混合物种群落中具有耐药性的物种。我们的理论观察结果通过使用两种物种群落进行了实证验证。

相似文献

1
Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments.
J R Soc Interface. 2020 May;17(166):20190776. doi: 10.1098/rsif.2019.0776. Epub 2020 May 27.
2
Coupled environmental and demographic fluctuations shape the evolution of cooperative antimicrobial resistance.
J R Soc Interface. 2023 Nov;20(208):20230393. doi: 10.1098/rsif.2023.0393. Epub 2023 Nov 1.
4
Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities.
J Anim Ecol. 2007 Jul;76(4):660-8. doi: 10.1111/j.1365-2656.2007.01252.x.
6
When rarity has costs: coexistence under positive frequency-dependence and environmental stochasticity.
Ecology. 2019 Jul;100(7):e02664. doi: 10.1002/ecy.2664. Epub 2019 Jun 5.
7
The competitive exclusion principle in stochastic environments.
J Math Biol. 2020 Apr;80(5):1323-1351. doi: 10.1007/s00285-019-01464-y. Epub 2020 Jan 10.
9
On the probabilistic nature of the species-area relation.
J Theor Biol. 2019 Feb 7;462:391-407. doi: 10.1016/j.jtbi.2018.11.032. Epub 2018 Nov 28.
10
Antibiotic resistance in bacterial communities.
Curr Opin Microbiol. 2023 Aug;74:102306. doi: 10.1016/j.mib.2023.102306. Epub 2023 Apr 11.

引用本文的文献

2
Protein kinase A signaling regulates immune evasion by shaving and concealing fungal β-1,3-glucan.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2423864122. doi: 10.1073/pnas.2423864122. Epub 2025 Jun 9.
3
Coevolutionary history of predation constrains the evolvability of antibiotic resistance in prey bacteria.
NPJ Antimicrob Resist. 2025 Jun 3;3(1):49. doi: 10.1038/s44259-025-00111-5.
4
Coexistence Theory for Microbial Ecology, and Vice Versa.
Environ Microbiol. 2025 Mar;27(3):e70072. doi: 10.1111/1462-2920.70072.
5
Predicting microbial growth dynamics in response to nutrient availability.
PLoS Comput Biol. 2021 Mar 18;17(3):e1008817. doi: 10.1371/journal.pcbi.1008817. eCollection 2021 Mar.
6
Using ecological coexistence theory to understand antibiotic resistance and microbial competition.
Nat Ecol Evol. 2021 Apr;5(4):431-441. doi: 10.1038/s41559-020-01385-w. Epub 2021 Feb 1.

本文引用的文献

1
The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth.
Front Microbiol. 2019 Jun 4;10:1124. doi: 10.3389/fmicb.2019.01124. eCollection 2019.
2
Within-host dynamics shape antibiotic resistance in commensal bacteria.
Nat Ecol Evol. 2019 Mar;3(3):440-449. doi: 10.1038/s41559-018-0786-x. Epub 2019 Feb 11.
3
The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification.
Nat Microbiol. 2019 Mar;4(3):504-514. doi: 10.1038/s41564-018-0342-0. Epub 2019 Feb 11.
4
Cellular hysteresis as a principle to maximize the efficacy of antibiotic therapy.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9767-9772. doi: 10.1073/pnas.1810004115. Epub 2018 Sep 12.
5
Drug-mediated metabolic tipping between antibiotic resistant states in a mixed-species community.
Nat Ecol Evol. 2018 Aug;2(8):1312-1320. doi: 10.1038/s41559-018-0582-7. Epub 2018 Jul 9.
6
Cooperation, competition and antibiotic resistance in bacterial colonies.
ISME J. 2018 Jun;12(6):1582-1593. doi: 10.1038/s41396-018-0090-4. Epub 2018 Mar 21.
7
Genomics of cellular proliferation in periodic environmental fluctuations.
Mol Syst Biol. 2018 Mar 5;14(3):e7823. doi: 10.15252/msb.20177823.
8
Lumpy species coexistence arises robustly in fluctuating resource environments.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):738-743. doi: 10.1073/pnas.1705944115. Epub 2017 Dec 20.
9
Species packing in eco-evolutionary models of seasonally fluctuating environments.
Ecol Lett. 2017 Sep;20(9):1158-1168. doi: 10.1111/ele.12813. Epub 2017 Jul 23.
10
Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1075-1080. doi: 10.1073/pnas.1617849114. Epub 2017 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验