Suppr超能文献

“我不能创造的,我就无法理解”:代谢和靶标杀虫剂抗性的功能验证协同作用。

'What I cannot create, I do not understand': functionally validated synergism of metabolic and target site insecticide resistance.

机构信息

Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece.

Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.

出版信息

Proc Biol Sci. 2020 May 27;287(1927):20200838. doi: 10.1098/rspb.2020.0838.

Abstract

The putative synergistic action of target-site mutations and enhanced detoxification in pyrethroid resistance in insects has been hypothesized as a major evolutionary mechanism responsible for dramatic consequences in malaria incidence and crop production. Combining genetic transformation and CRISPR/Cas9 genome modification, we generated transgenic lines expressing pyrethroid metabolizing P450 enzymes in a genetic background along with engineered mutations in the voltage-gated sodium channel () known to confer target-site resistance. Genotypes expressing the yellow fever mosquito while also bearing the mutation displayed substantially greater resistance ratio (RR) against deltamethrin than the product of each individual mechanism (RR: 19.85 > RR: 1.77 × RR: 3.00). Genotypes expressing pollen beetle and also bearing the () mutation, displayed an almost multiplicative RR (RR: 75.19 ≥ RR: 5.74 × RR: 12.74). Reduced pyrethroid affinity at the target site, delaying saturation while simultaneously extending the duration of P450-driven detoxification, is proposed as a possible underlying mechanism. Combinations of target site and P450 resistance loci might be unfavourable in field populations in the absence of insecticide selection, as they exert some fitness disadvantage in development time and fecundity. These are major considerations from the insecticide resistance management viewpoint in both public health and agriculture.

摘要

已假设昆虫中靶标位点突变和解毒增强的协同作用是导致疟疾发病率和作物产量显著变化的主要进化机制。通过遗传转化和 CRISPR/Cas9 基因组修饰,我们在遗传背景下生成了表达拟除虫菊酯代谢 P450 酶的转基因系,同时还对已知赋予靶标抗性的电压门控钠离子通道 ()进行了工程突变。表达黄热病蚊子 的基因型,同时还带有 突变,对溴氰菊酯的抗性比每个单独机制的产物(RR:19.85>RR:1.77×RR:3.00)高得多。表达 花粉甲虫 的基因型,同时还带有 ()突变,显示出几乎是乘法的 RR(RR:75.19≥RR:5.74×RR:12.74)。拟议的潜在机制是靶位点的拟除虫菊酯亲和力降低,在 P450 驱动解毒的同时延迟饱和并延长其持续时间。如果没有杀虫剂选择,靶标和 P450 抗性基因座的组合在田间种群中可能是不利的,因为它们在发育时间和繁殖力方面存在一些适应性劣势。从公共卫生和农业的杀虫剂抗性管理角度来看,这些都是主要的考虑因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fe/7287358/ce3ea8a97ea3/rspb20200838-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验