Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Biology, University of Crete, VassilikaVouton, 71409, Heraklion, Greece.
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
Insect Biochem Mol Biol. 2019 Jul;110:52-59. doi: 10.1016/j.ibmb.2019.04.018. Epub 2019 Apr 30.
Cuticular hydrocarbon (CHC) biosynthesis is a major pathway of insect physiology. In Drosophila melanogaster the cytochrome P450 CYP4G1 catalyses the insect-specific oxidative decarbonylation step, while in the malaria vector Anopheles gambiae, two CYP4G paralogues, CYP4G16 and CYP4G17 are present. Analysis of the subcellular localization of CYP4G17 and CYP4G16 in larval and pupal stages revealed that CYP4G16 preserves its PM localization across developmental stages analyzed; however CYPG17 is differentially localized in two distinct types of pupal oenocytes, presumably oenocytes of larval and adult developmental specificity. Western blot analysis showed the presence of two CYP4G17 forms, potentially associated with each oenocyte type. Both An. gambiae CYP4Gs were expressed in D. melanogaster flies in a Cyp4g1 silenced background in order to functionally characterize them in vivo. CYP4G16, CYP4G17 or their combination rescued the lethal phenotype of Cyp4g1-knock down flies, demonstrating that CYP4G17 is also a functional decarbonylase, albeit of somewhat lower efficiency than CYP4G16 in Drosophila. Flies expressing mosquito CYP4G16 and/or CYP4G17 produced similar CHC profiles to 'wild-type' flies expressing the endogenous CYP4G1, but they also produce very long-chain dimethyl-branched CHCs not detectable in wild type flies, suggesting that the specificity of the CYP4G enzymes contributes to determine the complexity of the CHC blend. In conclusion, both An. gambiae CYP4G enzymes contribute to the unique Anopheles CHC profile, which has been associated to defense, adult desiccation tolerance, insecticide penetration rate and chemical communication.
表皮碳氢化合物 (CHC) 的生物合成是昆虫生理学的主要途径。在黑腹果蝇中,细胞色素 P450 CYP4G1 催化昆虫特有的氧化脱羰步骤,而在疟疾病媒按蚊中,存在两个 CYP4G 基因的同源物 CYP4G16 和 CYP4G17。对 CYP4G17 和 CYP4G16 在幼虫和蛹期的亚细胞定位的分析表明,CYP4G16 在分析的发育阶段保持其质膜定位;然而,CYP4G17 在两种不同类型的蛹性腺细胞中存在差异定位,推测为幼虫和成虫发育特异性的性腺细胞。Western blot 分析显示存在两种 CYP4G17 形式,可能与每种性腺细胞类型相关。为了在体内对它们进行功能表征,在 Cyp4g1 沉默背景下在黑腹果蝇中表达了两种按蚊 CYP4Gs。CYP4G16、CYP4G17 或它们的组合挽救了 Cyp4g1 敲低果蝇的致死表型,表明 CYP4G17 也是一种功能性脱羰酶,尽管在果蝇中的效率略低于 CYP4G16。表达蚊 CYP4G16 和/或 CYP4G17 的果蝇产生的 CHC 图谱与表达内源性 CYP4G1 的“野生型”果蝇相似,但它们也产生了在野生型果蝇中无法检测到的非常长链二甲基支链 CHC,这表明 CYP4G 酶的特异性有助于确定 CHC 混合物的复杂性。总之,两种按蚊 CYP4G 酶都有助于形成独特的按蚊 CHC 图谱,这种图谱与防御、成虫耐旱性、杀虫剂渗透率和化学通讯有关。