Westbrook Paul S, Feder Kenneth S, Kremp Tristan, Monberg Eric M, Wu Hongchao, Zhu Benyuan, Huang Lei, Simoff Debra A, Shenk Scott, Handerek Vincent A, Karimi Mohammad, Nkansah Anthony, Yau Alan
OFS Labs, Somerset, NJ, USA.
OFS Labs, Somerset, NJ, USA.
iScience. 2020 Jun 26;23(6):101137. doi: 10.1016/j.isci.2020.101137. Epub 2020 May 6.
We report on engineered fibers with enhanced optical backscattering that exceeds Rayleigh scattering limits by more than one order of magnitude. We measure attenuation less than 0.5 dB/km from 1,300 to 1,650 nm. By controlling the enhanced backscatter over a 1.5-km length, we compensate for this attenuation, resulting in a higher backscatter signal at the end of the fiber. We demonstrate that the scattering strength may be stabilized for operation at temperatures above 200°C for at least 3 weeks. We show that the deleterious signal distortion due to the Kerr nonlinearity is within 10% of standard fiber. We then report on the use of these fibers in distributed acoustic sensing (DAS) measurements. A significant increase in acoustic signal-to-noise ratio leads to the possibility of improved spatial resolution in the enhanced fiber DAS system.
我们报道了具有增强光学后向散射的工程纤维,其超过瑞利散射极限一个多数量级。我们测量了在1300至1650纳米范围内小于0.5分贝/千米的衰减。通过在1.5千米长度上控制增强的后向散射,我们补偿了这种衰减,从而在光纤末端产生更高的后向散射信号。我们证明,在高于200°C的温度下运行至少3周,散射强度可以稳定。我们表明,由于克尔非线性导致的有害信号失真在标准光纤的10%以内。然后我们报道了这些光纤在分布式声学传感(DAS)测量中的应用。声学信噪比的显著提高使得增强型光纤DAS系统有可能提高空间分辨率。