Pantazatos Spiro P, Schmidt Mike F
Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Department of Psychiatry, Columbia University Irvine Medical Center, New York, NY, United States.
Front Neurosci. 2020 May 8;14:433. doi: 10.3389/fnins.2020.00433. eCollection 2020.
The primary claim of the Richiardi et al. (2015) Science article is that a measure of correlated gene expression, significant strength fraction (SSF), is related to resting state fMRI (rsfMRI) networks. However, there is still debate about this claim and whether spatial proximity, in the form of contiguous clusters, accounts entirely, or only partially, for SSF (Pantazatos and Li, 2017; Richiardi et al., 2017). Here, 13 distributed networks were simulated by combining 34 contiguous clusters randomly placed throughout cortex, with resulting edge distance distributions similar to rsfMRI networks. Cluster size was modulated (6-15 mm radius) to test its influence on SSF false positive rate (SSF-FPR) among the simulated "noise" networks. The contribution of rsfMRI networks on SSF-FPR was examined by comparing simulated networks whose clusters were sampled from: (1) all 1,777 cortical tissue samples, (2) all samples, but with non-rsfMRI cluster centers, and (3) only 1,276 non-rsfMRI samples. Results show that SSF-FPR is influenced only by cluster size ( > 0.9, < 0.001), not by rsfMRI samples. Simulations using 14 mm radius clusters most resembled rsfMRI networks. When thresholding at < 10, the SSF-FPR was 0.47. Genes that maximize SF have high spatial autocorrelation. In conclusion, SSF is unrelated to rsfMRI networks. The main conclusion of Richiardi et al. (2015) is based on a finding that is ∼50% likely to be a false positive, not <0.01% as originally reported in the article (Richiardi et al., 2015). We discuss why distance corrections alone and external face validity are insufficient to establish a trustworthy relationship between correlated gene expression measures and rsfMRI networks, and propose more rigorous approaches to preclude common pitfalls in related studies.
里奇亚尔迪等人(2015年)发表在《科学》杂志上的文章的主要观点是,一种相关基因表达的测量方法,即显著强度分数(SSF),与静息态功能磁共振成像(rsfMRI)网络有关。然而,关于这一观点以及以连续簇形式存在的空间邻近性是完全还是仅部分地解释了SSF,仍存在争议(潘塔扎托斯和李,2017年;里奇亚尔迪等人,2017年)。在此,通过组合随机分布在整个皮质中的34个连续簇来模拟13个分布式网络,得到的边距分布与rsfMRI网络相似。调节簇大小(半径6 - 15毫米)以测试其对模拟“噪声”网络中SSF假阳性率(SSF - FPR)的影响。通过比较其簇从以下样本中采样的模拟网络,研究了rsfMRI网络对SSF - FPR的贡献:(1)所有1777个皮质组织样本,(2)所有样本,但簇中心为非rsfMRI的,以及(3)仅1276个非rsfMRI样本。结果表明,SSF - FPR仅受簇大小影响(>0.9,<0.001),不受rsfMRI样本影响。使用半径14毫米的簇进行的模拟最类似于rsfMRI网络。当阈值设定为<10时,SSF - FPR为0.47。使SF最大化的基因具有高空间自相关性。总之,SSF与rsfMRI网络无关。里奇亚尔迪等人(2015年)的主要结论基于一个发现,该发现有大约50%的可能性是假阳性结果,而不是如文章最初报道的<0.01%(里奇亚尔迪等人,2015年)。我们讨论了为什么仅距离校正和外部表面效度不足以在相关基因表达测量与rsfMRI网络之间建立可靠的关系,并提出了更严格的方法以避免相关研究中的常见陷阱。