Department of Mathematics and Statistics, Southwest University, Chongqing, 400715, People's Republic of China.
LAMPS and CDM, Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
J Math Biol. 2020 Jul;81(1):243-276. doi: 10.1007/s00285-020-01509-7. Epub 2020 May 26.
Despite centuries of continuous efforts, mosquito-borne diseases (MBDs) remain enormous health threat of human life worldwide. Lately, the USA government has approved an innovative technology of releasing Wolbachia-infected male mosquitoes to suppress the wild mosquito population. In this paper we first introduce a stage-structured model for natural mosquitos, then we establish a new model considering the releasing of Wolbachia-infected male mosquitoes and the mating competition between the natural male mosquitoes and infected males on the suppression of natural mosquitoes. Dynamical analysis of the two models, including the existence and local stability of the equilibria and bifurcation analysis, reveals the existence of a forward bifurcation or a backward bifurcation with multiple attractors. Moreover, globally dynamical properties are further explored by using Lyapunov function and theory of monotone operators, respectively. Our findings suggest that infected male augmentation itself cannot always guarantee the success of population eradication, but leads to three possible levels of population suppression, so we define the corresponding suppression rate and estimate the minimum release ratio for population eradication. Furthermore, we study how the release ratio of infected males and natural ones, mating competition, the rate of cytoplasmic incompatibility and the basic offspring number affect the suppression rate of natural mosquitoes. Our results show that the successful eradication relies on assessing the reproductive capacity of natural mosquitoes, a selection of suitable Wolbachia strains and an appropriate release amount of infected males. This study will be helpful for public health authorities in designing proper strategies to control vector mosquitoes and prevent the epidemics of MBDs.
尽管人类已经持续努力了数个世纪,但蚊媒疾病(MBDs)仍然是全球范围内对人类生命健康的巨大威胁。最近,美国政府已经批准了一项创新性技术,即释放携带沃尔巴克氏体的雄性蚊子以抑制野生蚊子种群。在本文中,我们首先介绍了一个自然蚊子的阶段结构模型,然后建立了一个新的模型,考虑了释放携带沃尔巴克氏体的雄性蚊子以及自然雄性蚊子与感染雄性蚊子之间的交配竞争对自然蚊子的抑制作用。通过动力学分析,包括平衡点的存在性和局部稳定性以及分支分析,揭示了正向分支或反向分支与多个吸引子的存在。此外,还分别使用李雅普诺夫函数和单调算子理论进一步探讨了全局动力学性质。我们的研究结果表明,感染雄性蚊子的增加本身并不能保证种群灭绝的成功,但会导致三种可能的种群抑制水平,因此我们定义了相应的抑制率,并估计了实现种群灭绝所需的最小释放比例。此外,我们还研究了感染雄性蚊子和自然雄性蚊子的释放比例、交配竞争、细胞质不兼容率以及基本繁殖数如何影响自然蚊子的抑制率。我们的研究结果表明,成功的根除依赖于评估自然蚊子的繁殖能力、选择合适的沃尔巴克氏体菌株以及释放适当数量的感染雄性蚊子。本研究将有助于公共卫生部门制定适当的策略来控制病媒蚊子,预防蚊媒疾病的流行。