Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France.
Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France.
Int J Pharm. 2020 Jun 30;584:119454. doi: 10.1016/j.ijpharm.2020.119454. Epub 2020 May 25.
The development over the past decade of design strategies for cocrystal preparation have led to numerous methods for the synthesis of cocrystal without take care of their influence on the precise structure and stability of cocrystalline states. On the other hand the mechanism of cocrystal formation remains widely unclear, especially the identification of the type of interactions mostly responsible for the cocrystalline stability. The present study focuses on the influence of the crystalline synthesis method on the polymorphism of cocrystals was analyzed from the preparation of S-ibuprofen/nicotinamide and RS-ibuprofen/nicotinamide cocrystals by co-milling, slow solvent evaporation and crystallization from the melt. X-ray diffraction and Raman spectroscopy experiments have shown that the polymorphic form of the cocrystals obtained by recrystallization from the melt (Form A) is different from that prepared by milling and by slow evaporation in solution (Form B). It was shown that both isothermal and non-isothermal recrystallizations from the melt blending are observed via a transient metastable micro/nano structure of form A. Additionally, it was observed that form A transforms into Form B upon heating via very weak changes in the hydrogen bond network. The crystallization in form A from the melt, instead of form B by other methods, was explained by the difficulty to form a supramolecular organization too far energetically from that existing in the melt. This study shows the crucial role of supramolecular H-bonding on the formation mechanism of cocrystals and how does the synthesis method of cocrystals change the supramolecular organization and the related structure of cocrystals.
在过去十年中,用于共晶制备的设计策略的发展导致了许多无需考虑其对共晶状态的精确结构和稳定性的影响而合成共晶的方法。另一方面,共晶形成的机制仍然广泛不清楚,特别是确定对共晶稳定性起主要作用的相互作用类型。本研究重点分析了晶体合成方法对 S-布洛芬/烟酰胺和 RS-布洛芬/烟酰胺共晶通过共研磨、缓慢溶剂蒸发和熔融结晶制备的多晶型的影响。X 射线衍射和拉曼光谱实验表明,通过熔融重结晶获得的共晶(形式 A)的多晶型与通过研磨和溶液缓慢蒸发制备的多晶型(形式 B)不同。结果表明,通过熔体共混的等温和非等温重结晶都通过形式 A 的瞬态亚稳微/纳米结构观察到。此外,观察到形式 A 通过氢键网络的非常弱变化在加热时转变为形式 B。与其他方法相比,从熔体中以形式 A 结晶而不是以形式 B 结晶,这可以解释为形成远超出熔体中存在的能量的超分子组织非常困难。该研究表明超分子氢键在共晶形成机制中的关键作用,以及共晶的合成方法如何改变共晶的超分子组织和相关结构。