Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany.
Mol Cell Proteomics. 2020 Aug;19(8):1330-1345. doi: 10.1074/mcp.RA120.002082. Epub 2020 May 28.
The mammalian mitochondrial proteome consists of more than 1100 annotated proteins and their proteostasis is regulated by only a few ATP-dependent protease complexes. Technical advances in protein mass spectrometry allowed for detailed description of the mitoproteome from different species and tissues and their changes under specific conditions. However, protease-substrate relations within mitochondria are still poorly understood. Here, we combined Terminal Amine Isotope Labeling of Substrates (TAILS) N termini profiling of heart mitochondria proteomes isolated from wild type and mice with a classical substrate-trapping screen using FLAG-tagged proteolytically active and inactive CLPP variants to identify new ClpXP substrates in mammalian mitochondria. Using TAILS, we identified N termini of more than 200 mitochondrial proteins. Expected N termini confirmed sequence determinants for mitochondrial targeting signal (MTS) cleavage and subsequent N-terminal processing after import, but the majority were protease-generated neo-N termini mapping to positions within the proteins. Quantitative comparison revealed widespread changes in protein processing patterns, including both strong increases or decreases in the abundance of specific neo-N termini, as well as an overall increase in the abundance of protease-generated neo-N termini in CLPP-deficient mitochondria that indicated altered mitochondrial proteostasis. Based on the combination of altered processing patterns, protein accumulation and stabilization in CLPP-deficient mice and interaction with CLPP, we identified OAT, HSPA9 and POLDIP2 and as novel bona fide ClpXP substrates. Finally, we propose that ClpXP participates in the cooperative degradation of UQCRC1. Together, our data provide the first landscape of the heart mitochondria N terminome and give further insights into regulatory and assisted proteolysis mediated by ClpXP.
哺乳动物的线粒体蛋白质组由 1100 多种注释蛋白组成,其蛋白质的稳定仅由少数几个 ATP 依赖性蛋白酶复合物调节。蛋白质质谱技术的进步允许对不同物种和组织的线粒体蛋白质组及其在特定条件下的变化进行详细描述。然而,线粒体中蛋白酶-底物的关系仍知之甚少。在这里,我们将野生型和 小鼠心脏线粒体蛋白质组的末端胺同位素标记的底物(TAILS)N 末端谱分析与使用 FLAG 标记的具有蛋白水解活性和无活性的 CLPP 变体的经典底物捕获筛选相结合,以鉴定哺乳动物线粒体中的新 ClpXP 底物。使用 TAILS,我们鉴定了 200 多种线粒体蛋白的 N 末端。预期的 N 末端证实了线粒体靶向信号(MTS)切割和随后导入后 N 末端加工的序列决定因素,但大多数是蛋白酶产生的新 N 末端,映射到蛋白质内部的位置。定量比较显示蛋白质加工模式广泛变化,包括特定新 N 末端丰度的强烈增加或减少,以及 CLPP 缺陷线粒体中蛋白酶产生的新 N 末端丰度的整体增加,这表明线粒体蛋白质组稳态发生改变。基于改变的处理模式、CLPP 缺陷小鼠中的蛋白积累和稳定以及与 CLPP 的相互作用,我们鉴定出 OAT、HSPA9 和 POLDIP2 是新的真正 ClpXP 底物。最后,我们提出 ClpXP 参与 UQCRC1 的协同降解。总之,我们的数据提供了心脏线粒体 N 末端组的第一个全景图,并进一步深入了解 ClpXP 介导的调节和辅助蛋白水解。