From the ‡Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France.
§Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, BIG-LCBM, 38000 Grenoble, France.
Mol Cell Proteomics. 2019 Jun;18(6):1085-1095. doi: 10.1074/mcp.RA118.001269. Epub 2019 Mar 15.
All but thirteen mammalian mitochondrial proteins are encoded by the nuclear genome, translated in the cytosol and then imported into the mitochondria. For a significant proportion of the mitochondrial proteins, import is coupled with the cleavage of a presequence called the transit peptide, and the formation of a new N-terminus. Determination of the neo N-termini has been investigated by proteomic approaches in several systems, but generally in a static way to compile as many N-termini as possible. In the present study, we have investigated how the mitochondrial proteome and N-terminome react to chemical stimuli that alter mitochondrial metabolism, namely zinc ions and rapamycin. To this end, we have used a strategy that analyzes both internal and N-terminal peptides in a single run, the dN-TOP approach. We used these two very different stressors to sort out what could be a generic response to stress and what is specific to each of these stressors. Rapamycin and zinc induced different changes in the mitochondrial proteome. However, convergent changes to key mitochondrial enzymatic activities such as pyruvate dehydrogenase, succinate dehydrogenase and citrate synthase were observed for both treatments. Other convergent changes were seen in components of the N-terminal processing system and mitochondrial proteases. Investigations into the generation of neo-N-termini in mitochondria showed that the processing system is robust, as indicated by the lack of change in neo N-termini under the conditions tested. Detailed analysis of the data revealed that zinc caused a slight reduction in the efficiency of the N-terminal trimming system and that both treatments increased the degradation of mitochondrial proteins. In conclusion, the use of this combined strategy allowed a detailed analysis of the dynamics of the mitochondrial N-terminome in response to treatments which impact the mitochondria.
除了十三种哺乳动物线粒体蛋白外,其余的蛋白均由核基因组编码,在细胞质中翻译,然后导入线粒体。对于很大一部分线粒体蛋白,其输入与前导序列(称为转运肽)的切割和新 N 端的形成相关联。在几个系统中,已经通过蛋白质组学方法研究了新 N 端的确定,但通常是以静态方式编译尽可能多的 N 端。在本研究中,我们研究了线粒体蛋白质组和 N 端组如何对改变线粒体代谢的化学刺激做出反应,即锌离子和雷帕霉素。为此,我们使用了一种在单个运行中同时分析内部和 N 端肽的策略,即 dN-TOP 方法。我们使用这两种非常不同的应激源来区分可能是对压力的一般反应和每种应激源特有的反应。雷帕霉素和锌诱导了线粒体蛋白质组的不同变化。然而,对于这两种处理,观察到关键线粒体酶活性(如丙酮酸脱氢酶、琥珀酸脱氢酶和柠檬酸合酶)的变化是趋同的。在 N 端加工系统和线粒体蛋白酶的组成部分中也观察到其他趋同变化。对线粒体中新 N 端的生成的研究表明,处理条件下,前导肽加工系统的效率几乎没有变化,这表明处理条件下前导肽加工系统具有稳健性。对数据的详细分析表明,锌导致 N 端修剪系统的效率略有降低,并且两种处理都增加了线粒体蛋白的降解。总之,使用这种组合策略可以详细分析线粒体 N 端组在影响线粒体的处理下的动态变化。