Lacroix Antoine, de Laissardière Guy Trambly, Quémerais Pascal, Julien Jean-Pierre, Mayou Didier
Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France.
CY Cergy Paris Université, CNRS, Laboratoire de Physique théorique et Modélisation, F-95302 Cergy-Pontoise, France.
Phys Rev Lett. 2020 May 15;124(19):196601. doi: 10.1103/PhysRevLett.124.196601.
The transport properties of MAPbI3 are analyzed within a tight-binding model. We find a strong Fröhlich interaction of electron and holes with the electrostatic potential induced by the longitudinal optical phonon modes. This potential induces a strong scattering and limits the electronic mobilities at room temperature to about 200 cm^{2}/V s. With additional extrinsic disorder, a large fraction of the electrons and holes are localized, but they can diffuse by following nearly adiabatically the evolution of the electrostatic potential. This process of diffusion, at a rate which is given by the lattice dynamics, contributes to the unique electronic properties of this material.
在紧束缚模型中分析了MAPbI3的输运性质。我们发现电子和空穴与纵向光学声子模式诱导的静电势存在强烈的弗罗利希相互作用。该电势会引起强烈散射,并将室温下的电子迁移率限制在约200 cm²/V·s。在存在额外的非本征无序的情况下,大部分电子和空穴会被局域化,但它们可以通过几乎绝热地跟随静电势的演化而扩散。这种以晶格动力学给出的速率进行的扩散过程,促成了这种材料独特的电子性质。