Instituto de Fisica, Universidade de Sao Paulo, 05508-090 Sao Paulo, SP, Brazil.
J Chem Inf Model. 2020 Jul 27;60(7):3472-3488. doi: 10.1021/acs.jcim.0c00077. Epub 2020 Jun 18.
Solute-solvent systems are an important topic of study, as the effects of the solvent on the solute can drastically change its properties. Theoretical studies of these systems are done with methods, molecular simulations, or a combination of both. The simulations of molecular systems are usually performed with either molecular dynamics (MD) or Monte Carlo (MC) methods. Classical MD has evolved much in the last decades, both in algorithms and implementations, having several stable and efficient codes developed and available. Similarly, MC methods have also evolved, focusing mainly in creating and improving methods and implementations in available codes. In this paper, we provide some enhancements to a configurational bias Monte Carlo (CBMC) methodology to simulate flexible molecules using the molecular fragments concept. In our implementation the acceptance criterion of the CBMC method was simplified and a generalization was proposed to allow the simulation of molecules with any kind of fragments. We also introduce the new version of DICE, an MC code for molecular simulation (available at https://portal.if.usp.br/dice). This code was mainly developed to simulate solute-solvent systems in liquid and gas phases and in interfaces (gas-liquid and solid-liquid) that has been mostly used to generate configurations for a sequential quantum mechanics/molecular mechanics method (S-QM/MM). This new version introduces several improvements over the previous ones, with the ability of simulating flexible molecules with CBMC as one of them. Simulations of well-known molecules, such as -octane and 1,2-dichloroethane in vacuum and in solution, are presented to validate the new implementations compared with MD simulations, experimental data, and other theoretical results. The efficiency of the conformational sampling was analyzed using the acceptance rates of different alkanes: -octane, neopentane, and 4-ethylheptane. Furthermore, a very complex molecule, boron subphtalocyanine, was simulated in vacuum and in aqueous solution showing the versatility of the new implementation. We show that the CBMC is a very good method to perform conformation sampling of complex moderately sized molecules (up to 150 atoms) in solution following the Boltzmann thermodynamic equilibrium distribution.
溶剂-溶质体系是一个重要的研究课题,因为溶剂对溶质的影响会极大地改变其性质。这些体系的理论研究通常采用 方法、分子模拟或两者的结合。分子体系的模拟通常采用分子动力学 (MD) 或蒙特卡罗 (MC) 方法。经典的 MD 在过去几十年中得到了很大的发展,无论是在算法还是在实现方面,都有几个稳定高效的代码被开发和使用。同样,MC 方法也在不断发展,主要集中在创建和改进现有代码中的方法和实现。在本文中,我们对一种构象偏差蒙特卡罗 (CBMC) 方法进行了一些改进,以使用分子片段概念模拟柔性分子。在我们的实现中,简化了 CBMC 方法的接受准则,并提出了一种推广,允许模拟任何类型片段的分子。我们还介绍了 DICE 的新版本,这是一个用于分子模拟的 MC 代码(可在 https://portal.if.usp.br/dice 获得)。该代码主要用于模拟液相和气相以及界面(气-液和固-液)中的溶剂-溶质体系,主要用于为顺序量子力学/分子力学方法 (S-QM/MM) 生成构型。新版本与之前的版本相比,引入了几个改进,其中之一是能够使用 CBMC 模拟柔性分子。通过与 MD 模拟、实验数据和其他理论结果进行比较,对真空和溶液中 -辛烷和 1,2-二氯乙烷等知名分子的模拟验证了新实现的有效性。通过不同烷烃的接受率分析了构象采样的效率:-辛烷、新戊烷和 4-乙基庚烷。此外,还模拟了非常复杂的分子硼次酞菁在真空和水溶液中的情况,展示了新实现的多功能性。我们表明,CBMC 是一种在溶液中对复杂中等大小的分子(最多 150 个原子)进行构象采样的非常好的方法,可以遵循玻尔兹曼热力学平衡分布。