Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA) Parque Tecnológico de Álava, 01510 Miñano, Álava, Spain.
IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
Molecules. 2020 May 27;25(11):2494. doi: 10.3390/molecules25112494.
Silicon-based anodes are extensively studied as an alternative to graphite for lithium ion batteries. However, silicon particles suffer larges changes in their volume (about 280%) during cycling, which lead to particles cracking and breakage of the solid electrolyte interphase. This process induces continuous irreversible electrolyte decomposition that strongly reduces the battery life. In this research work, different silicon@graphite anodes have been prepared through a facile and scalable ball milling synthesis and have been tested in lithium batteries. The morphology and structure of the different samples have been studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and scanning and transmission electron microscopy. We show how the incorporation of an organic solvent in the synthesis procedure prevents particles agglomeration and leads to a suitable distribution of particles and intimate contact between them. Moreover, the importance of the microstructure of the obtained silicon@graphite electrodes is pointed out. The silicon@graphite anode resulted from the wet ball milling route, which presents capacity values of 850 mA h/g and excellent capacity retention at high current density (≈800 mA h/g at 5 A/g).
硅基阳极作为锂离子电池中石墨的替代品得到了广泛研究。然而,硅颗粒在循环过程中体积变化较大(约 280%),导致颗粒开裂和固体电解质界面的破坏。这个过程引起了连续的不可逆电解质分解,强烈降低了电池寿命。在这项研究工作中,通过简便且可扩展的球磨合成制备了不同的硅@石墨阳极,并在锂电池中进行了测试。使用 X 射线衍射、X 射线光电子能谱、拉曼光谱、扫描和透射电子显微镜研究了不同样品的形貌和结构。我们展示了在合成过程中引入有机溶剂如何防止颗粒团聚,并导致颗粒的适当分布和它们之间的紧密接触。此外,还指出了所获得的硅@石墨电极的微观结构的重要性。通过湿球磨路线得到的硅@石墨阳极,具有 850 mA h/g 的容量值和在高电流密度下(在 5 A/g 时约为 800 mA h/g)出色的容量保持率。