Suppr超能文献

硫化氢和甲基乙二醛的相互作用通过调节活性氧物质和渗透物质代谢诱导玉米幼苗耐热性。

Interplay between hydrogen sulfide and methylglyoxal initiates thermotolerance in maize seedlings by modulating reactive oxidative species and osmolyte metabolism.

机构信息

School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China.

Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China.

出版信息

Protoplasma. 2020 Sep;257(5):1415-1432. doi: 10.1007/s00709-020-01516-x. Epub 2020 May 30.

Abstract

Hydrogen sulfide (HS) and methylglyoxal (MG) were supposed to be novel signaling molecules in plants. However, whether interplay between HS and MG can initiate thermotolerance in maize seedlings and in relation to metabolism of reactive oxygen species (ROS) and osmolytes is little known. In this study, watering with MG and NaHS (HS donor) alone or in combination elevated survival and tissue vigor of maize seedlings under heat stress and coped with an increase in the biomembrane injury (as indicated in membrane lipid peroxidation and electrolyte leakage). The above-mentioned effects were separately weakened by MG scavengers (N-acetyl cysteine: NAC; aminoguanidine: AG) and HS inhibitor (DL-propargylglycine, PAG) and scavenger (hypotaurine, HT). These suggested that the interplay between HS and MG initiated the thermotolerance in maize seedlings. The further data indicated that, under non-heat stress and heat stress conditions, MG and NaHS alone or in combination modulated ROS metabolism by regulating the activities of antioxidant enzymes (catalase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase) and the contents of non-enzymatic antioxidants (ascorbic acid, glutathione, flavonoids, and carotenoids) in maize seedlings. In addition, MG and NaHS alone or in combination also separately modulated the metabolism of osmolytes (proline, trehalose, glycine betaine, and total soluble sugar), HS (L-cysteine desulfhydrase and O-acetylserine (thione) lyase), and MG (glyoxalase I, glyoxalase II, and MG reductase). These physiological effects also were separately impaired by NAC, AG, PAG, and HT. The current data illustrated that the interplay between HS and MG initiated the thermotolerance in maize seedlings by modulating ROS, osmolyte, HS, and MG metabolism.

摘要

硫化氢 (HS) 和甲基乙二醛 (MG) 被认为是植物中的新型信号分子。然而,HS 和 MG 之间的相互作用是否能在玉米幼苗中引发耐热性,以及与活性氧 (ROS) 和渗透物代谢的关系,知之甚少。在这项研究中,单独或联合浇水用 MG 和 NaHS(HS 供体)提高了耐热胁迫下玉米幼苗的成活率和组织活力,并应对生物膜损伤的增加(如膜脂质过氧化和电解质泄漏所示)。上述作用分别被 MG 清除剂 (N-乙酰半胱氨酸:NAC;氨基胍:AG) 和 HS 抑制剂 (DL-丙炔甘氨酸,PAG) 和清除剂 (牛磺酸,HT) 减弱。这表明 HS 和 MG 之间的相互作用引发了玉米幼苗的耐热性。进一步的数据表明,在非热胁迫和热胁迫条件下,MG 和 NaHS 单独或联合通过调节抗氧化酶(过氧化氢酶、抗坏血酸过氧化物酶、愈创木酚过氧化物酶、谷胱甘肽还原酶、单脱氢抗坏血酸还原酶和脱氢抗坏血酸还原酶)的活性和非酶抗氧化剂(抗坏血酸、谷胱甘肽、类黄酮和类胡萝卜素)的含量来调节 ROS 代谢。此外,MG 和 NaHS 单独或联合也分别调节渗透物(脯氨酸、海藻糖、甘氨酸甜菜碱和总可溶性糖)、HS(L-半胱氨酸脱硫酶和 O-乙酰丝氨酸(硫酮)裂解酶)和 MG(醛糖还原酶 I、醛糖还原酶 II 和 MG 还原酶)的代谢。这些生理作用也分别被 NAC、AG、PAG 和 HT 破坏。目前的数据表明,HS 和 MG 之间的相互作用通过调节 ROS、渗透物、HS 和 MG 代谢来引发玉米幼苗的耐热性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验