Cre/loxP 途径介导的 Pik3c3 下调抑制肾近端小管细胞的肥大生长。
Cre/loxP approach-mediated downregulation of Pik3c3 inhibits the hypertrophic growth of renal proximal tubule cells.
机构信息
Departments of Cellular Biology & Anatomy and Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia.
Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
出版信息
J Cell Physiol. 2020 Dec;235(12):9958-9973. doi: 10.1002/jcp.29811. Epub 2020 May 31.
Nephron loss stimulates residual functioning nephrons to undergo compensatory growth. Excessive nephron growth may be a maladaptive response that sets the stage for progressive nephron damage, leading to kidney failure. To date, however, the mechanism of nephron growth remains incompletely understood. Our previous study revealed that class III phosphatidylinositol-3-kinase (Pik3c3) is activated in the remaining kidney after unilateral nephrectomy (UNX)-induced nephron loss, but previous studies failed to generate a Pik3c3 gene knockout animal model. Global Pik3c3 deletion results in embryonic lethality. Given that renal proximal tubule cells make up the bulk of the kidney and undergo the most prominent hypertrophic growth after UNX, in this study we used Cre-loxP-based approaches to demonstrate for the first time that tamoxifen-inducible SLC34a1 promoter-driven CreER recombinase-mediated downregulation of Pik3c3 expression in renal proximal tubule cells alone is sufficient to inhibit UNX- or amino acid-induced hypertrophic nephron growth. Furthermore, our mechanistic studies unveiled that the SLC34a1-CreER recombinase-mediated Pik3c3 downregulation inhibited UNX- or amino acid-stimulated lysosomal localization and signaling activation of mechanistic target of rapamycin complex 1 (mTORC1) in the renal proximal tubules. Moreover, our additional cell culture experiments using RNAi confirmed that knocking down Pik3c3 expression inhibited amino acid-stimulated mTORC1 signaling and blunted cellular growth in primary cultures of renal proximal tubule cells. Together, both our in vivo and in vitro experimental results indicate that Pik3c3 is a major mechanistic mediator responsible for sensing amino acid availability and initiating hypertrophic growth of renal proximal tubule cells by activation of the mTORC1-S6K1-rpS6 signaling pathway.
肾单位丢失会刺激剩余功能肾单位进行代偿性生长。过度的肾单位生长可能是一种适应不良的反应,为进行性肾单位损伤奠定基础,导致肾衰竭。然而,迄今为止,肾单位生长的机制仍不完全清楚。我们之前的研究表明,在单侧肾切除(UNX)诱导的肾单位丢失后,剩余肾脏中 III 类磷脂酰肌醇 3-激酶(Pik3c3)被激活,但之前的研究未能产生 Pik3c3 基因敲除动物模型。Pik3c3 基因的全局缺失会导致胚胎致死。鉴于肾近端小管细胞构成肾脏的大部分,并且在 UNX 后经历最显著的肥大生长,在这项研究中,我们首次使用 Cre-loxP 方法证明,仅在肾近端小管细胞中,他莫昔芬诱导的 SLC34a1 启动子驱动的 CreER 重组酶介导的 Pik3c3 表达下调足以抑制 UNX 或氨基酸诱导的肥大肾单位生长。此外,我们的机制研究揭示了 SLC34a1-CreER 重组酶介导的 Pik3c3 下调抑制了 UNX 或氨基酸刺激的肾近端小管细胞中机械靶标雷帕霉素复合物 1(mTORC1)的溶酶体定位和信号激活。此外,我们使用 RNAi 的额外细胞培养实验证实,敲低 Pik3c3 表达抑制了氨基酸刺激的 mTORC1 信号,并减弱了肾近端小管细胞原代培养物的细胞生长。综上所述,我们的体内和体外实验结果均表明,Pik3c3 是一种主要的机制介质,通过激活 mTORC1-S6K1-rpS6 信号通路,负责感知氨基酸的可用性并启动肾近端小管细胞的肥大生长。
相似文献
Am J Physiol Renal Physiol. 2020-1-6
Am J Physiol Cell Physiol. 2024-10-1
Am J Physiol Renal Physiol. 2009-9
J Clin Invest. 2015-6
J Am Soc Nephrol. 2005-5
J Am Soc Nephrol. 2016-4
Am J Physiol. 1992-7
Am J Physiol Renal Physiol. 2012-2-29
引用本文的文献
Am J Physiol Cell Physiol. 2024-10-1
本文引用的文献
Science. 2019-10-10
J Clin Invest. 2019-11-1
J Med Chem. 2017-1-12
J Am Soc Nephrol. 2016-4
J Clin Invest. 2015-6
J Cell Sci. 2014-3-1
Proc Natl Acad Sci U S A. 2013-10-14