Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA.
Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN, 37996, USA.
Carbohydr Polym. 2020 Jul 15;240:116275. doi: 10.1016/j.carbpol.2020.116275. Epub 2020 Apr 21.
Ice recrystallization inhibition (IRI) activity has been recently discovered on nanocelluloses, which enables potential applications in several fields. This study focused on the effect of fibril length on the IRI activity of nanocelluloses. The 2, 2, 6, 6-tetramethylpiperidine-1-oxyl oxidized cellulose nanofibrils (TEMPO-CNFs) with similar surface charge densities (SCDs) and fibril widths, but with different fibril lengths were prepared by sonication treatment. The IRI activity of nanocelluloses was enhanced in TEMPO-CNFs receiving sonication less than 30 min because of the reduction of fibril aggregation. Further increase of sonication time to 60 and 120 min led to a decreased IRI activity due to the reduction of fibril lengths. Our results indicate longer nanocelluloses are more IRI active. The IRI activity was not correlated with the viscosity or gelling properties of nanocellulose dispersions. Research findings are useful in producing nanocelluloses with enhanced IRI activity and in understanding the underlying IRI mechanism.
冰结晶抑制(IRI)活性最近在纳米纤维素上被发现,这使得它在多个领域具有潜在的应用。本研究集中于纤维长度对纳米纤维素 IRI 活性的影响。通过超声处理制备了具有相似表面电荷密度(SCD)和纤维宽度、但具有不同纤维长度的 2,2,6,6-四甲基哌啶-1-氧自由基氧化纤维素纳米纤维(TEMPO-CNF)。由于纤维聚集减少,接受超声处理小于 30 分钟的 TEMPO-CNF 的 IRI 活性增强。进一步增加超声处理时间至 60 和 120 分钟会由于纤维长度的减少而导致 IRI 活性降低。我们的结果表明,较长的纳米纤维素具有更高的 IRI 活性。IRI 活性与纳米纤维素分散体的粘度或胶凝性质无关。研究结果有助于生产具有增强 IRI 活性的纳米纤维素,并有助于理解潜在的 IRI 机制。