Ben Dkhil Sadok, Perkhun Pavlo, Luo Chieh, Müller David, Alkarsifi Riva, Barulina Elena, Avalos Quiroz Yatzil Alejandra, Margeat Olivier, Dubas Stephan Thierry, Koganezawa Tomoyuki, Kuzuhara Daiki, Yoshimoto Noriyuki, Caddeo Claudia, Mattoni Alessandro, Zimmermann Birger, Würfel Uli, Pfannmöller Martin, Bals Sara, Ackermann Jörg, Videlot-Ackermann Christine
Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France.
Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28404-28415. doi: 10.1021/acsami.0c05884. Epub 2020 Jun 12.
The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-]-thiophene--benzodithiophene (PTB7):[6,6]phenyl C butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PCBM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.
聚合物共混物的纳米级形态是实现体异质结太阳能电池高效率的关键参数。因此,研究通常聚焦于优化的共混形态,而对未优化共混物的研究可能会为那些对形态缺陷更具鲁棒性的共混物设计提供见解。在此,我们聚焦于噻吩并[3,4-b]噻吩 - 苯并二噻吩(PTB7):[6,6]苯基丁酸甲酯(PCBM)体异质结(BHJ)共混物在不同供体/受体重量比且无添加剂情况下形态与器件性能的直接关联。我们表明,虽然1:1.5比例的共混物由超出激子扩散长度的大的富供体和富勒烯域组成,但将比例降低至1:0.5以下会导致共混物仅由富聚合物域组成。重要的是,此类共混物中的光电流密度可达到使用添加剂的完全优化共混物所达到值的45%至60%。我们在此提供直接的视觉证据,表明富供体域中的富勒烯并非均匀分布而是局部波动。为此,我们使用透射电子显微镜对低能损失电子进行光谱成像,对共混物进行了成分纳米级形态分析。电荷传输测量与分子动力学模拟相结合表明,聚合物相内的富勒烯子结构在富聚合物相中产生高效的电子传输。此外,我们表明聚合物相中富勒烯紧密堆积区域的形成是由PTB7:PCBM混合焓驱动的。这种富勒烯簇纳米级网络的出现导致电子陷阱态减少,从而在聚合物域内实现光电流的高效提取。因此,对聚合物 - 受体相互作用进行适当调节可在富聚合物相中引入受体子网,提高高效BHJ对诸如富供体域超过激子扩散长度等形态缺陷的耐受性。