Mi Jinpeng, Liang Hongzhuo, Katsakis Nikolaos, Tang Song, Li Qingdu, Zhang Changshui, Zhang Jianwei
Institute of Machine Intelligence (IMI), University of Shanghai for Science and Technology, Shanghai, China.
Technical Aspects of Multimodal Systems, Department of Informatics, University of Hamburg, Hamburg, Germany.
Front Neurorobot. 2020 May 13;14:26. doi: 10.3389/fnbot.2020.00026. eCollection 2020.
Similar to specific natural language instructions, intention-related natural language queries also play an essential role in our daily life communication. Inspired by the psychology term "affordance" and its applications in Human-Robot interaction, we propose an object affordance-based natural language visual grounding architecture to ground intention-related natural language queries. Formally, we first present an attention-based multi-visual features fusion network to detect object affordances from RGB images. While fusing deep visual features extracted from a pre-trained CNN model with deep texture features encoded by a deep texture encoding network, the presented object affordance detection network takes into account the interaction of the multi-visual features, and reserves the complementary nature of the different features by integrating attention weights learned from sparse representations of the multi-visual features. We train and validate the attention-based object affordance recognition network on a self-built dataset in which a large number of images originate from MSCOCO and ImageNet. Moreover, we introduce an intention semantic extraction module to extract intention semantics from intention-related natural language queries. Finally, we ground intention-related natural language queries by integrating the detected object affordances with the extracted intention semantics. We conduct extensive experiments to validate the performance of the object affordance detection network and the intention-related natural language queries grounding architecture.
与特定的自然语言指令类似,意图相关的自然语言查询在我们的日常生活交流中也起着至关重要的作用。受心理学术语“可供性”及其在人机交互中的应用启发,我们提出了一种基于物体可供性的自然语言视觉基础架构,用于对意图相关的自然语言查询进行基础定位。形式上,我们首先提出一个基于注意力的多视觉特征融合网络,以从RGB图像中检测物体可供性。在将从预训练的卷积神经网络(CNN)模型中提取的深度视觉特征与由深度纹理编码网络编码的深度纹理特征进行融合时,所提出的物体可供性检测网络考虑了多视觉特征的相互作用,并通过整合从多视觉特征的稀疏表示中学习到的注意力权重,保留了不同特征的互补性质。我们在一个自建数据集上训练和验证基于注意力的物体可供性识别网络,其中大量图像来自MSCOCO和ImageNet。此外,我们引入了一个意图语义提取模块,从意图相关的自然语言查询中提取意图语义。最后,我们通过将检测到的物体可供性与提取的意图语义相结合,对意图相关的自然语言查询进行基础定位。我们进行了广泛的实验,以验证物体可供性检测网络和意图相关的自然语言查询基础架构的性能。