Suppr超能文献

大规模开放在线课程的心理测量学:衡量学习者的能力水平

Psychometrics of MOOCs: Measuring Learners' Proficiency.

作者信息

Abbakumov Dmitry, Desmet Piet, Van den Noortgate Wim

机构信息

ITEC, IMEC research group at KU Leuven, Kortrijk, BE.

Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, BE.

出版信息

Psychol Belg. 2020 May 22;60(1):115-131. doi: 10.5334/pb.515.

Abstract

Massive open online courses (MOOCs) generate learners' performance data that can be used to understand learners' proficiency and to improve their efficiency. However, the approaches currently used, such as assessing the proportion of correct responses in assessments, are oversimplified and may lead to poor conclusions and decisions because they do not account for additional information on learner, content, and context. There is a need for theoretically grounded data-driven explainable educational measurement approaches for MOOCs. In this conceptual paper, we try to establish a connection between psychometrics, a scientific discipline concerned with techniques for educational and psychological measurement, and MOOCs. First, we describe general principles of traditional measurement of learners' proficiency in education. Second, we discuss qualities of MOOCs which hamper direct application of approaches based on these general principles. Third, we discuss recent developments in measuring proficiency that may be relevant for analyzing MOOC data. Finally, we draw directions in psychometric modeling that might be interesting for future MOOC research.

摘要

大规模在线开放课程(MOOC)会生成学习者的表现数据,这些数据可用于了解学习者的水平并提高他们的学习效率。然而,目前所采用的方法,比如评估测试中正确答案的比例,过于简单化,可能会导致得出糟糕的结论和决策,因为这些方法没有考虑到关于学习者、内容和情境的其他信息。对于MOOC而言,需要有基于理论的数据驱动的可解释教育测量方法。在这篇概念性论文中,我们试图在心理测量学(一门关注教育和心理测量技术的科学学科)与MOOC之间建立联系。首先,我们描述教育中传统测量学习者水平的一般原则。其次,我们讨论MOOC的一些特性,这些特性阻碍了基于这些一般原则的方法的直接应用。第三,我们讨论测量水平方面的最新进展,这些进展可能与分析MOOC数据相关。最后,我们给出心理测量建模的方向,这些方向可能会引起未来MOOC研究的兴趣。

相似文献

1
Psychometrics of MOOCs: Measuring Learners' Proficiency.
Psychol Belg. 2020 May 22;60(1):115-131. doi: 10.5334/pb.515.
2
Benefits of Massive Open Online Course Participation: Deductive Thematic Analysis.
J Med Internet Res. 2020 Jul 8;22(7):e17318. doi: 10.2196/17318.
3
Using Learner Reviews to Inform Instructional Video Design in MOOCs.
Behav Sci (Basel). 2023 Apr 13;13(4):330. doi: 10.3390/bs13040330.
4
Who will pass? Analyzing learner behaviors in MOOCs.
Res Pract Technol Enhanc Learn. 2016;11(1):8. doi: 10.1186/s41039-016-0033-5. Epub 2016 Apr 8.
5
MOOC Behavior Analysis and Academic Performance Prediction Based on Entropy.
Sensors (Basel). 2021 Oct 5;21(19):6629. doi: 10.3390/s21196629.
6
Measuring growth in students' proficiency in MOOCs: Two component dynamic extensions for the Rasch model.
Behav Res Methods. 2019 Feb;51(1):332-341. doi: 10.3758/s13428-018-1129-1.
7
Elderly Learners and Massive Open Online Courses: A Review.
Interact J Med Res. 2016 Jan 7;5(1):e1. doi: 10.2196/ijmr.4937.
8
The Involvement of Academic and Emotional Support for Sustainable Use of MOOCs.
Behav Sci (Basel). 2024 May 30;14(6):461. doi: 10.3390/bs14060461.
9
Measuring student's proficiency in MOOCs: multiple attempts extensions for the Rasch model.
Heliyon. 2018 Dec 4;4(12):e01003. doi: 10.1016/j.heliyon.2018.e01003. eCollection 2018 Dec.
10
Deep Learning for Discussion-Based Cross-Domain Performance Prediction of MOOC Learners Grouped by Language on FutureLearn.
Arab J Sci Eng. 2021;46(4):3613-3629. doi: 10.1007/s13369-020-05117-x. Epub 2021 Jan 6.

引用本文的文献

1
Human touch in digital education-a solution.
Clin Rheumatol. 2020 Dec;39(12):3897-3898. doi: 10.1007/s10067-020-05448-y. Epub 2020 Oct 9.

本文引用的文献

1
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
2
Measuring student's proficiency in MOOCs: multiple attempts extensions for the Rasch model.
Heliyon. 2018 Dec 4;4(12):e01003. doi: 10.1016/j.heliyon.2018.e01003. eCollection 2018 Dec.
4
Measuring growth in students' proficiency in MOOCs: Two component dynamic extensions for the Rasch model.
Behav Res Methods. 2019 Feb;51(1):332-341. doi: 10.3758/s13428-018-1129-1.
5
A multicomponent latent trait model for diagnosis.
Psychometrika. 2013 Jan;78(1):14-36. doi: 10.1007/s11336-012-9296-y. Epub 2012 Dec 6.
6
A generalized longitudinal mixture IRT model for measuring differential growth in learning environments.
Behav Res Methods. 2014 Sep;46(3):823-40. doi: 10.3758/s13428-013-0413-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验