Lee Su-Kyung, Park Hongjun, Yoon Ji Woong, Kim Kiwoong, Cho Sung June, Maurin Guillaume, Ryoo Ryong, Chang Jong-San
Department of Chemistry, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Research Group of Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong, Daejeon 305-600, Republic of Korea.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28484-28495. doi: 10.1021/acsami.0c04228. Epub 2020 Jun 12.
Microporous 3D graphene-like carbons were synthesized in Faujasite (FAU)-, EMT-, and beta-zeolite templates using the recently developed Ca ion-catalyzed synthesis method. The microporous carbons liberated from these large-pore zeolites (0.7-0.9 nm) retain the structural regularity of zeolite. FAU-, EMT-, and beta zeolite-templated carbons (ZTCs) with faithfully constructed pore diameters of 1.2, 1.1, and 0.9 nm, respectively, and very large Brunauer-Emmet-Teller areas (2700-3200 m g) were obtained. We have discovered that these schwarzite-like carbons exhibit preferential adsorption of ethane over ethylene at pressures in the range of 1-10 bar. The curved graphene structure, consisting of a diverse range of carbon polygons with a narrow pore size of ∼1 nm, provides abundant adsorption sites in micropores and retains its ethane selectivity at pressures up to 10 bar. After varying the oxygen content in the beta ZTC, the ethane and ethylene adsorption isotherms show that the separation ability is not significantly affected by surface oxygen groups. Based on these adsorption results, a breakthrough separation procedure using a CH/CH gas mixture (9:1 molar ratio) is demonstrated to produce ethylene with a purity of 99.9%.
采用最近开发的钙离子催化合成方法,在八面沸石(FAU)、EMT和β沸石模板中合成了微孔3D类石墨烯碳。从这些大孔沸石(0.7 - 0.9纳米)中释放出的微孔碳保留了沸石的结构规则性。分别获得了孔径精确构建为1.2、1.1和0.9纳米且具有非常大的布鲁诺尔-埃米特-泰勒比表面积(2700 - 3200平方米/克)的FAU、EMT和β沸石模板碳(ZTCs)。我们发现,这些类黑碳在1 - 10巴的压力范围内对乙烷的吸附优于乙烯。由多种碳多边形组成的弯曲石墨烯结构,孔径约为1纳米且很窄,在微孔中提供了丰富的吸附位点,并在高达10巴的压力下保持其对乙烷的选择性。改变β-ZTC中的氧含量后,乙烷和乙烯的吸附等温线表明,分离能力不受表面氧基团的显著影响。基于这些吸附结果,展示了一种使用CH₄/C₂H₄气体混合物(摩尔比9:1)的突破性分离程序,以生产纯度为99.9%的乙烯。