González-Fernández Alberto, Berenguer-Murcia Ángel, Cazorla-Amorós Diego, Cárdenas-Lizana Fernando
Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, U.K.
Instituto Universitario de Materiales de Alicante y Departamento de Química Inorgánica, Universidad de Alicante, Ctra. San Vicente del Raspeig s/n, Ap. 99, 03080 Alicante, Spain.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28158-28168. doi: 10.1021/acsami.0c05285. Epub 2020 Jun 15.
We have investigated the gas-phase ( = 1 atm; = 373 K) hydrogenation of (tertiary alkynol) 2-methyl-3-butyn-2-ol (MBY) and (secondary) 3-butyn-2-ol (BY) over a series of carbon (C), non-reducible (AlO and MgO), and reducible (CeO and ZnO) supported monometallic [Pd (0.6-1.2% wt) and Zn (1% wt)] and bimetallic Pd-Zn (Pd:Zn mol ratio = 95:5, 70:30, and 30:70) catalysts synthesized by deposition-precipitation and colloidal deposition. The catalysts have been characterized by H chemisorption, hydrogen temperature-programmed desorption (H-TPD), specific surface area (SSA), X-ray photoelectron spectroscopy (XPS), and transmission (TEM) and scanning transmission electron microscopy (STEM) analyses. Reaction over these catalysts generated the target alkenol [2-methyl-3-buten-2-ol (MBE) and 3-buten-2-ol (BE)] through partial hydrogenation and alkanol [2-methyl-butan-2-ol (MBA) and 2-butanol (BA)]/ketone [2-butanone (BONE)] as a result of full hydrogenation and double-bond migration. The catalysts exhibit a similar Pd nanoparticle size (2.7 ± 0.3 nm) but a modified electronic character (based on XPS). Hydrogenation activity is linked to surface hydrogen (from H chemisorption and H-TPD). An increase in H:alkynol (from 1 → 10) results in enhanced alkynol consumption with a greater rate in the transformation of MBY ( BY); H:alkynol had negligible effect on product distribution. Reaction selectivity is insensitive to the Pd site electron density with a similar response ( = 65 ± 9% and S = 70 ± 8%) over Pd (on AlO and MgO) and Pd (on C and CeO). A Pd/ZnO catalyst delivered enhanced alkenol selectivity ( = 90% and = 96%) attributed to PdZn alloy phase formation (proved by XRD and XPS) but low activity, ascribed to metal encapsulation. A two-fold increase in the consumption rate was recorded for Pd-Zn/AlO (30:70) versus Pd/ZnO with a similar alloy content (32 ± 4% from XPS), ascribed to a contribution due to spillover hydrogen (from H-TPD) where high alkenol selectivity was maintained.
我们研究了在一系列通过沉积沉淀法和胶体沉积法合成的碳(C)负载、不可还原(Al₂O₃和MgO)负载以及可还原(CeO₂和ZnO)负载的单金属[Pd(0.6 - 1.2% wt)和Zn(1% wt)]和双金属Pd - Zn(Pd:Zn摩尔比 = 95:5、70:30和30:70)催化剂上,(叔炔醇)2 - 甲基 - 3 - 丁炔 - 2 - 醇(MBY)和(仲醇)3 - 丁炔 - 2 - 醇(BY)在气相(p = 1 atm;T = 373 K)下的氢化反应。通过氢气化学吸附、程序升温脱附(H₂ - TPD)、比表面积(SSA)、X射线光电子能谱(XPS)以及透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)分析对催化剂进行了表征。这些催化剂上的反应通过部分氢化生成目标烯醇[2 - 甲基 - 3 - 丁烯 - 2 - 醇(MBE)和3 - 丁烯 - 2 - 醇(BE)],并通过完全氢化和双键迁移生成烷醇[2 - 甲基 - 丁醇 - 2 - 醇(MBA)和2 - 丁醇(BA)]/酮[2 - 丁酮(BONE)]。催化剂表现出相似的Pd纳米颗粒尺寸(2.7 ± 0.3 nm),但电子特性有所改变(基于XPS)。氢化活性与表面氢(来自氢气化学吸附和H₂ - TPD)相关。H₂:炔醇比(从1 → 10)的增加导致炔醇消耗增加,MBY(BY)转化速率更高;H₂:炔醇比对产物分布影响可忽略不计。反应选择性对Pd位点电子密度不敏感,在Pd(负载于Al₂O₃和MgO上)和Pd(负载于C和CeO₂上)上具有相似的响应(S₁ = 65 ± 9%和S₂ = 70 ± 8%)。Pd/ZnO催化剂由于形成了PdZn合金相(由XRD和XPS证明),烯醇选择性增强(S₁ = 90%和S₂ = 96%),但活性较低,这归因于金属包封。与具有相似合金含量(XPS分析为32 ± 4%)的Pd/ZnO相比,Pd - Zn/Al₂O₃(30:70)的消耗速率提高了两倍,这归因于溢流氢(来自H₂ - TPD)的贡献,同时保持了较高的烯醇选择性。